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ABSTRACT

This paper attempts to address the challenge of effectively select-

ing suitable terms (i.e., concept names) as seed signatures for the

abstraction of OWL ontologies. Established methods for generating

seed signatures rely predominantly on geographical connections, a

practice that proves to be inadequate in yielding satisfactory abstrac-

tions. This limitation consequently curtails the practical reusability

of OWL ontologies within the broader context of knowledge man-

agement. To overcome these limitations, this paper introduces a

novel approach called “signature extension”. This approach serves

the dual purpose of generating seed signatures for “modularization”

and “uniform interpolation” of OWL ontologies, both of which are

pivotal ontology abstraction techniques. The signature extension

approach is designed to establish the semantic relevance of concept

names by harnessing the treasure trove of metadata information

available within a given OWL ontology. Specifically, it quantifies

the relevance of these names through a numerical measure, which

is derived from their embeddings transformed using the OWL2Vec*

framework. Empirical evaluations conducted on this approach un-

equivocally demonstrate its superior performance when compared

to other established methods for term selection. In addition, a com-

prehensive case study on ontology abstraction tasks shows that

modularization tools can create more comprehensive and precise

abstractions when utilizing the signatures extended through our

proposed approach.
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1 INTRODUCTION

Given the inherent diversity of web resources, ontologies designed

for the semantic web—such as OWL ontologies [3]—tend to be ex-

tensive, capturing knowledge across a broad range of topics [13].

However, their scale and breadth can impede reusability and inter-

operability in practical applications. This challenge stems chiefly

from the difficulties in managing and manipulating large, complex

ontologies, which can become cumbersome and demand substantial

computational resources during the reasoning process. A promis-

ing approach to mitigate these issues is to distill a fragment from

an ontology that replicates the original ontology’s functionality

within a specific context, yet is significantly smaller in size. The

ultimate goal is to optimize the size reduction of this fragment to

the maximum extent possible.

Two logic-based approaches have been developed for extract-

ing meaningful fragments of ontologies. One approach, known as

modularization [5, 8, 10, 11, 15, 17], focuses on identifying a syn-

tactic subset, namely a module, within an ontology. This module

is carefully selected to maintain the validity of several reasoning

tasks within a specific sub-signature of the ontology, referred to

as a seed signature. The second approach, referred to as uniform
interpolation [19, 23, 24], is concerned with the computation of a

more compact representation of a module within an ontology. This

refined module, called a uniform interpolant, retains the underlying
logical definitions of the terms within the seed signature. To sum

up, these two approaches offer distinct strategies for computing

ontology fragments, and their utilization is contingent on specific

use cases and requirements in the context of ontology engineering.

As one might expect, the quality of extracted fragments signifi-

cantly relies on the seed signature used in the modularization and

uniform interpolation procedures. We can define a fragment as

“complete” if it encompasses all essential information pertaining

to the topic of interest. A fragment is considered “precise” when

it meets the criteria of completeness and, additionally, avoids in-

corporating excessive irrelevant information concerning the topic.

To elaborate, selecting too few terms for the seed signature could

result in the loss of vital information that a user might find valuable.

Conversely, choosing too many terms, some of which are weakly re-

lated to the topic, would introduce excessive additional information.

Furthermore, importing more information can alter the definitions

of terms within the original ontology, potentially undermining its

coherence and consistency [11].

Nonetheless, there has been limited focus on the problem of term

selection when it comes to extracting fragments of ontologies. Chen
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et al. [5] proposed a “signature extension” approach to generating

seed signatures as input to ontology modularization procedures.

The idea behind this approach is twofold:

Step (1) Start with a “primitive seed signature” Σ, typically con-

taining several terms suggested by domain experts;

Step (2) Extend Σ by including new terms found in the axioms

that involve the existing Σ-terms.

This process is repeated until no additional terms can be added to

Σ. To illustrate this, consider the analogy of people living on an

island: if two individuals, denoted as p_1 and p_2, reside together
in a house h_1 on an island, they are considered “relevant” and are

included in Σ = {p_1, p_2}. If there exists a road connecting h_1
to another house h_2, the individuals in h_2 are added to Σ. This
iterative strategy is applied throughout the entire island, resulting

in Σ eventually encompassing all residents on the island. However,

it is important to note that a person living on a different island will

never be included in Σ due to the absence of a connecting road;

these islands are “geographically isolated”.

Clearly, when applying this signature extension approach, one

would acquire a larger seed signature, and consequently, a more

informative fragment. However, it can be argued that the seed signa-

ture obtained from this approach, which relies solely on geographic

connections, may struggle to produce a “complete” fragment. This

argument stems from the belief that assessing the “relevance” be-

tween a term and the expanding seed signature should encompass

a comprehensive evaluation of all metadata associated with the

participating terms within the framework of the host ontology.

This perspective emphasizes the need to consider factors beyond

geographic connections when determining term relevance in this

context.

Figure 1: A snippet of a multi-domain ontology

Consider an ontologist working with a medical ontology that

contains information about various medications and their applica-

tions. Within this ontology, there is a term called “MentholSpray”
that is part of the medical domain. Initially, when selecting the seed

signature for abstraction, the ontologist focuses on terms related

to general healthcare but does not include “MentholSpray” in the

primitive signature because it is not explicitly associated with sports

or football. However, upon further examination of the ontology’s

metadata, it becomes evident that “MentholSpray” is often used to

treat sports-related injuries, especially in the context of football. The

metadata includes notes from healthcare professionals indicating

that “MentholSpray” is commonly prescribed for pain relief in foot-

ball players after matches or during recovery from sports-related

injuries. In this scenario, despite the initial geographic isolation

of “MentholSpray” from the sports domain, its strong relevance to

the topic of football emerges when considering the comprehensive

metadata. Consequently, including “MentholSpray” in the extended
signature could significantly enhance the ability of the ontology

fragment to answer queries related to pain management in foot-

ball, showcasing the importance of metadata-driven term relevance

assessment within the host ontology’s context.

The metadata of OWL ontologies comprises a wealth of semantic

information and other critical information, which may encompass

potential semantic relationships among concepts within these on-

tologies. Effectively leveraging this information can assist in the

establishment of connections within concepts that extend beyond

the boundaries of the logical components defined in the ontologies.

However, given the multi-dimensional nature of semantic informa-

tion contained within metadata, the current consensus has shifted

toward mapping this information into vector representations. Dur-

ing the process of term selection, the absence of supervision signals

renders the similarity between vector representations contingent

upon the choice of distance function [4]. It is crucial to stress that

the main contribution of this work does not lie in delineating the

similarity function. Rather, our focus is centered on integrating ex-

plicit metadata semantic information within logic-based ontology

modularization frameworks, thereby enhancing their functionality.

In this paper, we introduce a novel approach to term selection

aimed at uncovering semantic relationships between two distinct

groups of terms. Our method involves assessing the relevance of

non-Σ terms to Σ terms based on their D-dimensional vector rep-

resentations, which are computed using essential metadata from

the ontology. These vector representations are generated using

OWL2Vec [6], an ontology embedding framework that leverages

random walk and word embedding techniques. OWL2Vec encodes

the semantics of OWL ontologies in a vector space, taking into

account various aspects, including the ontologies’ graph structure,

lexical information, and logical constructs. The primary objective

of this work is to enhance the practical utility of existing logic-

based ontology abstraction methods for a wide range of ontology-

based knowledge processing tasks. This enhancement is achieved

by incorporating non-logical approaches to streamline the process.

Historically, there has been limited exploration of the synergies be-

tween logical and data-driven techniques and how they can leverage

each other’s strengths to establish a robust application framework.

Our empirical evaluation demonstrates that our proposed approach

outperforms conventional term selection baselines when recom-

mending suitable seed signatures. By adopting this approach, we

can generate more precise ontology fragments using two estab-

lished modularization and uniform interpolation tools.

2 PRELIMINARIES

2.1 Description Logic and OWL

An ontology fixes a vocabulary of terms (called classes, which are

sets of instances characterized by some shared properties of its in-

stances) relevant to a subject domain, and specifies (as a formal de-

scription of domain knowledge) constraints among the classes and



the relationships holding between classes by logical statements [22].

The logical statements on memberships of data elements (called

individuals) in classes or relationships between individuals form a

base of facts, i.e., a database [20]. When we speak of ontology, we

think only of the knowledge specifying the constraints among the

classes and the relationships. We include both the constraints and

the facts under the term knowledge base. In DLs, classes are called

concepts and relationships are called roles.
Modern ontologies are formulated in the OWL 2 Web Ontol-

ogy Language (OWL 2 for short) [18] based on description logics

(DLs) [1, 2], which are a successful family of knowledge represen-

tation languages. OWL 2 introduces different profiles, each with

varying levels of expressiveness to cater to different use cases and

computational complexities. Among the most commonly used pro-

files are OWL 2 EL (Description Logic EL++), OWL 2 QL (Query

Language), and OWL 2 RL (Rule Language). These profiles allow on-

tology developers to choose the appropriate level of expressiveness

and reasoning complexity for their specific applications, balancing

computational efficiency with modeling capabilities. OWL 2 Full is

by far the most expressive of the profiles in OWL 2, which corre-

sponds to the DL SROIQ [14]. Our term selection approach does

not require a specific level of expressiveness (i.e., logic-independent)

and is universally applicable across all OWL 2 profiles.

Definition 1 (SROIQ Concepts and Roles). Let NC, NR
and NI be countably infinite and pairwise disjoint sets of respectively
concept names, role names, and individual names, with the top con-
cept ⊤ ∈ NC, the bottom concept ⊥ ∈ NC, and the universal role
𝑈 ∈ NR. An SROIQ role is either a role name or the inverse of a role
name. SROIQ concepts are defined from NC and NI by induction
with the constructs of ¬ (negation), ⊓ (conjunction), ⊔ (disjunction),
∃ (existential restriction), ∀ (value restriction), ≥ and ≤ (qualified
number restriction) and Self (self restriction).

The semantics ofSROIQ is defined in terms of an interpretation
I = ⟨ΔI , ·I⟩, where ΔI

is the domain of the interpretation (a non-

empty set), and ·I denotes the interpretation function, which assigns
to every individual 𝑎 ∈ NI an element 𝑎I ∈ ΔI

, to every concept

name 𝐴 ∈ NC a set 𝐴I ⊆ ΔI
, and to every role name 𝑟 ∈ NR a

binary relation 𝑟 I ⊆ ΔI × ΔI
. The interpretation function ·I is

inductively extended to other SROIQ concepts as in [2].

LetI be an interpretation.I is amodel of an ontology O, written

I |= O, iff every axiom in O is true in I. An axiom 𝛼 is a logical
consequence of an ontology O, written O |= 𝛼 , iff 𝛼 is true in every

model I of O. In this paper, a signature sig ⊆ NC is defined as a set

of concept names. Let sig(𝑋 ) denote the set of the concept names

present in 𝑋 , where 𝑋 ranges over concepts, axioms, and sets of

axioms (ontologies).

2.2 Metadata of OWL Ontologies

Metadata refers to information about the ontology or knowledge

artifact itself, distinct from the domain knowledge it represents.

For instance, if a class like “Electron” is authored by a specific in-

dividual, say “Woodstock” on a particular date, this constitutes an

editorial statement about the class rather than its individual in-

stances. Dublin Core
1
offers a set of annotations for such metadata,

1
https://www.dublincore.org/

which are accessible within tools like Protégé[21], although they

are not inherent to OWL 2. In OWL ontologies, metadata can be

categorized into three main types:

• Editorial/Provenance Meta Statements: These encompass

information about the knowledge acquisition process and its

sources. This includes details about the author, date of entry,

revision history, authority, and more. The Dublin Core subset is a

widely adopted standard for editorial and provenance metadata,

with some statements being temporary and geared towards de-

velopment processes, while others are intended to be permanent.

• Explanatory Statements: These consist of text-based defini-

tions, guidelines, comments, and other explanatory content. They

often incorporate natural language definitions for classes, along

with comments, evidence, and provenance information related

to the conceptualization of the class.

• Structural Information about theArtefact: Some information

artefacts contain meta-models or structural information that

describes their own organization. For example, regular patterns

of axioms may be employed, and templates for these patterns

can be part of the meta-model. This aspect focuses on describing

how the ontology is constructed, rather than the ontology model

itself.

Metadata in OWL ontologies serves multiple purposes, including

documentation, data integration, reasoning, and interoperability. It

enhances the understanding of ontology content, facilitates ontol-

ogy management, and supports various Semantic Web applications

by providing context and context-awareness for ontology elements.

2.3 Modularization and Uniform Interpolation

Modularization can be defined in various ways depending on the

properties of the computed modules. The definition given in this pa-

per is a generalized one that collects common conditions necessary

for an ontology to be recognized as a module. More specific defini-

tions of modularization can be derived by introducing particular

conditions into this generalized framework.

Definition 2 (Module). Let O be an ontology in a DL L and
Σ ⊆ sig(O) be a set of concept names (i.e., the seed signature). An
L-ontologyM is a Σ-module of O iff the following conditions hold:
(1) M ⊆ O, and
(2) for any L-axiom 𝛼 with sig(𝛼) ⊆ Σ,M |= 𝛼 iff O |= 𝛼 .

The definition of uniform interpolation is given as follows.

Definition 3 (Uniform Interpolant). Let O be an ontology
in a DL L and Σ ⊆ sig(O) be a set of concept names (i.e., the seed
signature). An L-ontology V is a Σ-uniform interpolant of O iff the
following conditions hold:
(i) sig(V) ⊆ Σ, and
(ii) for any L-axiom 𝛼 with sig(𝛼) ⊆ Σ,V |= 𝛼 iff O |= 𝛼 .

Σ-modules and Σ-uniform interpolants have exactly the same

logical consequences in the seed signature Σ. The difference is that,
while a module is always a syntactic subset of the given ontology,

and may use names outside of Σ, a uniform interpolant uses only

the names in Σ. We therefore call the view computed by uniform

interpolation a signature-restricted abstract. A large number of new

axioms will be deduced from the given ontology in order to pre-

serve the semantics of the Σ-names when eliminating the other



names from the ontology, i.e., the computation of uniform inter-

polants relies on more reasoning than that of modules. This can

lead to uniform interpolants containing substantially more complex

axioms than the input ontology [19]. This is why the problem of

uniform interpolation is generally believed to be computationally

harder thanmodularization [15]. We regard modularization and uni-

form interpolation as ‘non-standard” forms of reasoning, because it

cannot be reduced to the “standard” satisfiability/entailment tests.

3 METADATA-BASED TERM SELECTION

Our term selection approach accommodates ontologies described

in OWL 2, which are based on the description logic SROIQ [14];

see the Description Logic Handbook [2] for a detailed description

of the syntax and semantics of description logics.

Arguably, most topics can be sufficiently summarized or defined

by a set of keywords (i.e., key concept names), with less reliance on

role names. Therefore, in this paper, we consider seed signatures

solely as a set of concept names.

Given an ontology O and a seed signature Σ ⊆ sig(O) consisting
of either a single or a few concept names, normally suggested by

a group of domain experts or simply chosen by users, as the most

representative keywords for the topic of interest, our approach com-

putes an extension Σ
′
of Σ through a three-step process involving

concept representation learning, computation of relevance values, and
signature extension based on relevance values. The resulting Σ

′
serves

as the updated seed signature fed into subsequent modularization

and uniform interpolation procedures.

3.1 Concept Representation Learning

Concept representation learning involves the conversion of every

concept name 𝐴 in O into a D-dimensional vector, denoted as e𝐴 ,
within a vector space. These vectors are constructed with considera-

tion of the “relevance” of each concept name𝐴 to the seed signature

Σ and are computed based on important metadata of O.

Our concept representation learning model is based on the core

OWL2Vec* [6], an ontology embedding framework for computing

vector representations of concept names in OWL ontologies as

expressive as SROIQ. OWL2Vec* computes the embedding of an

OWL ontology based on a corpus of token sequences, which are

generated from the ontology’s metadata. This metadata includes

diverse components, encompassing the graph structure of the on-

tology represented as an RDF graph (a collection of RDF triples)

derived from the OWL ontology through the OWL2Vec* transfor-

mation. Additionally, it incorporates what is commonly referred to

as the “lexical information” about the ontology, which encompasses

annotations. Furthermore, it encompasses the “logical information”

concerning the concepts and roles within the ontology, encompass-

ing relationships like subsumption, equivalence, and disjointness,

among others.

It should be noted that OWL2Vec* was originally designed for

purposes other than term selection tasks. Therefore, we have made

modifications to the core OWL2Vec* model to optimize its perfor-

mance for downstream term selection tasks. Specifically, we have

introduced a fine-tuning process specifically tailored to enhance on-

tology embedding. Further elaboration on this fine-tuning process

can be found in Section 4.

Algorithm 1 Nearest Neighbour Ranking

Input: A set 𝑁𝐶 of concept names, A set of seed signatures Σ s.t.

Σ ⊆ 𝑁𝐶 ,

A set of concept embedding {e𝐴 : 𝐴 ∈ 𝑁𝐶 },
A distance function 𝑑 : R𝐷 × R𝐷 → [0,∞].

Output: A relevance function 𝑓 : 𝑁𝐶 → [0, 1],
1: Let 𝑔 be a mapping of 𝑁𝐶 → [0,∞].
2: for all 𝐴 ∈ 𝑁𝐶 do

3: 𝑔(𝐴) := ∞
4: for all 𝐴′ ∈ Σ do

5: 𝑔(𝐴) := min (𝑑 (e𝐴, e𝐴′ ) , 𝑔(𝐴)).
6: end for

7: end for

8: Let 𝑓 be a mapping of 𝑁𝐶 → [0, 1].
9: for all 𝐴 ∈ 𝑁𝐶 do

10: Find 𝑖 , s.t. 𝐴 has the 𝑖-th smallest 𝑔(𝐴) in 𝑁𝐶 .
11: 𝑓 (𝐴) := 1 − (𝑖 − 1)/|𝑁𝐶 |.
12: end for

13: return 𝑓

3.2 Computing Relevance Values

This step computes the relevance value of every non-seed concept

name 𝐵 in O to Σ. This computation is based on the relative dis-

tance between 𝐵 and its nearest seed neighbor within the vector

space. The relevance value is a scalar within the range of [0, 1],
where a value of 1 indicates the highest level of relevance, while

that of 0 is the lowest. The computation of this relevance value

is performed using our newly developed algorithm, known as the

Nearest Neighbor Ranking algorithm (NN-RANK), which is shown

in Algorithm 1.

More specifically, NN-RANK computes the distance from each

non-seed name to each seed name in the vector space. In principle,

several distance functions 𝑑 : R𝐷 × R𝐷 → [0,∞] can be employed

for this purpose. However, in our experiments, the Cosine distance,
formulated as:

𝑑 (e𝐴, e𝐵) = 1 − e𝐴 · e𝐵
∥e𝐴∥2 ∥e𝐵 ∥2

has proven to be the most effective measure of relevance compared

to euclidean distance and dot product similarity. Based on this for-

mula, |Σ| distance values are computed for each non-seed name 𝐴.

Among these values, the smallest one is identified as the valid dis-
tance value of 𝐴 to Σ. NN-RANK subsequently arranges all concept

names in O in ascending order based on their valid distance values.

Concept names with smaller valid distance values are considered

to be semantically more relevant to the seed signature, and con-

sequently, to the central topic. These valid distance values (along

with the corresponding concept names) are then uniformly mapped

to a range between 0 and 1. The outcome represents the relevance
value of each 𝐴 with respect to Σ.

3.3 Relevance-Based Seed Signature Extension

A question naturally emerges at this stage: how can the computed

relevance values be effectively employed to guide the selection of

meaningful terms for ontology abstraction? Different application



demands may warrant varying strategies. In the absence of a well-

established gold standard, a practical approach is to quantify the

“degree” of relevance and determine to what extent a concept name

can be considered “relevant” to the seeds in Σ. In this work, we set

a threshold 𝜎 within the range of 0 to 1 to represent the “degree”

of relevance. Our approach extends the primitive seed signature Σ
by including concept names with a relevance value greater than or

equal to 𝜎 . The result is Σ′ = Σ ∪ {𝐴 | 𝐴 ∈ sig(O) ∧ 𝑓 (𝐴, Σ) ≥ 𝜎}.
The higher the threshold 𝜎 , the smaller the extension obtained.

Computing | sig(O)| × |Σ| distances has a linear time complexity

w.r.t. | sig(O)|, and the subsequent sorting operation has a log-linear
time complexity w.r.t. | sig(O)|.

4 EMPIRICAL STUDY OF NN-RANK

In this study, we employed NN-RANK to predict SNOMED CT Ref-

set components. The objective was to demonstrate the algorithm’s

capability to augment a given seed signature Σ with concept names

that exhibit high relevance to the initial seeds within a vector space.

All evaluations were conducted on a server equipped with an In-

tel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz and 128 GB of memory.

SNOMED CT
2
is currently the most comprehensive, multilingual

clinical healthcare ontology in the world. A SNOMED CT Refset
3

constitutes a compilation of SNOMED CT components that share

specific attributes or characteristics, often related to a particular

domain or field. As an illustrative example, consider the Malaria

Refset, curated by the National Resource Centre for EHR Standards

in India. This Refset includes various findings, disorders, and organ-

isms directly associated with Malaria. Arguably, Refsets officially

published by a group of ontology engineers and domain experts

can be regarded as complete and precise standards for abstracting
specific domains within SNOMED CT, such as Malaria.

The task was to predict concepts within SNOMED CT Refsets

based on a seed signature. This seed signature could be either

randomly generated or manually selected from the Refsets. The

task was meticulously designed to align with real-world scenarios

in which we aimed to create new Refsets with minimal involve-

ment from domain experts. We operated under the assumption that

Refsets developed by domain experts represented “complete” and

“precise” fragments, containing concepts intricately linked at the

semantic level, often within the same clinical domain. This predic-

tive task of SNOMED CT Refset components served as a crucial

evaluation metric for the performance of term selection models.

To accurately position our algorithm within the landscape of

existing approaches, we conducted a comparative analysis of NN-

RANK against two alternative term selection approaches. These

approaches, which we considered as baselines, are as follows:

• star-modularization: An approach adapted from locality-based

modularization [12]. It involves considering all concept names

within the computed module as an extension of the seed signa-

ture. While not necessarily ideal, this method serves as a means

to expand the seed signature. Under this approach, the relevance

value 𝑓 (𝐴, Σ) of concept name 𝐴 is assigned a value of 1 if 𝐴 is

present in the signature of the computedmodule, and 0 otherwise.

2
https://www.snomed.org/

3
https://confluence.ihtsdotools.org/display/DOCGLOSS/refset

• Sig-Ext (Signature Extension): This approach, based solely on

geographic connections [5], is configured with a specified depth

parameter 𝑑 .

Additionally, we also conducted a comparative evaluation of NN-

RANK against Meta-SVDD [9], a model designed for few-shot one-

class classification problems. Using Meta-SVDD, we extracted pat-

terns from existing Refsets to improve its predictive performance

when applied to new Refset components.

We utilized the International Edition of SNOMED CT (version

July 2020) for our experiments. This edition contains 354,256 con-

cepts, 355,214 logical axioms, and 1,506,185 description axioms. Our

study focused on two sets of publicly accessible and actively used

term collections, namely theNHS Refsets4 and theNRC Refsets5. The
NHS Refsets, curated by the National Health Service (NHS) in the

UK, provide a subset of components derived from the full SNOMED

CT Edition, specifically tailored to meet specific requirements. The

NRC Refsets, on the other hand, were created and released by the

National Resource Centre for EHR Standards (NRCeS) in India. This

collection comprises 30 distinct Refsets, each focusing on concepts

related to common diseases.

We adopted two established metrics that were widely used in

classification and ranking tasks, namely the Normalized Discounted

Cumulative Gain (NDCG) and Area under the ROC Curve (AUC),

to assess the performance of our term selection models. Both met-

rics yield higher (lower) values when a model makes more (less)

accurate predictions, effectively quantifying the similarity between

the model’s approximations and the Refset components.

The ontology embedding generated by OWL2Vec* for SNOMED

CT was applied to create the concept embeddings, with each con-

cept represented as a 200-dimensional vector. Differing from the

original OWL2Vec* model, we implemented a fine-tuning process

tailored for this task to further enhance the ontology embedding.

Specifically, Refsets in this procedure were transformed into docu-

ments containing (concept_uri, refset_identifier, concept_uri) triples.
Subsequently, we employed a Word2Vec model to refine the pre-

computed concept embedding based on these documents. The fine-

tuning process followed a 10-fold cross-validation approach. This

means that the evaluations for any Refset were based on a concept

embedding fine-tuned on 90% Refsets other than itself.

For NRC Refsets, we used two distinct seed signatures Σ𝑟 and
Σ𝑠 throughout the experiment, each containing 𝐾 concepts. Σ𝑟 was
randomly chosen from the entire pool of the Refset concepts, while

Σ𝑠 was carefully crafted to ensure that the 𝐾 seeds it encompassed

could provide multifaceted coverage of the topic. For NHS Refsets,

we used a separate set of Σ𝑟 generated following the same strategy.

It was imperative to have the flexibility to adjust the size 𝐾 of the

initial seed signature in accordance with the specific application

requirements. In real-world scenarios, the seed signature may be

manually selected, and a smaller value of 𝐾 translates to reduced

manual effort. Consequently, we adopted 𝐾 = 5 in our experiments.

We employed the SyntacticLocalityModuleExtractor class from
the OWL API

6
to generate star-modules. As previously mentioned,

4
https://dd4c.digital.nhs.uk/dd4c/

5
https://www.nrces.in/resources#snomedct_releases

6
https://owlcs.github.io/owlapi/



Methods NHS Refsets NRC Refsets

NDCG AUC NDCG AUC

K=1 K=5 K=1 K=5 K=1 K=5 K=1 K=5

Star-modularization 40.93 ± 14.61 47.33 ± 13.36 50.84 ± 1.10 54.73 ± 5.56 49.10 ± 16.23 51.83 ± 14.62 50.64 ± 0.98 54.58 ± 7.82

Sig-Ext (d=1) - 49.14 ± 10.92 - 54.31 ± 5.58 - 55.68 ± 11.06 - 53.60 ± 6.73

Sig-Ext (d=2) - 47.99 ± 11.66 - 54.31 ± 5.58 - 54.31 ± 11.81 - 53.78 ± 6.91

Meta-SVDD - 67.72 ± 23.26 - 91.55 ± 10.43 - 71.65 ± 16.62 - 88.81 ± 8.87

NN-RANK 68.57 ± 20.36 77.93 ± 14.91 92.19 ± 11.19 96.49 ± 5.11 71.32 ± 14.33 77.25 ± 10.03 89.66 ± 8.42 94.29 ± 5.51

NN-RANK + fine-tuning 69.50 ± 20.13 78.76 ± 14.62 93.33 ± 9.57 96.98 ± 4.62 73.57 ± 12.54 80.19 ± 9.14 90.40 ± 8.43 94.79 ± 5.69

Table 1: Results on NHS, NRC Refsets using Σ𝑟 (the higher the better).

Methods NDCG AUC

K=1 K=3 K=5 K=1 K=3 K=5

Star-modularization 48.85 ± 16.68 50.65 ± 15.26 52.25 ± 14.42 50.82 ± 2.01 53.21 ± 5.53 54.68 ± 7.50

Sig-Ext (d=1) 49.97 ± 15.36 53.42 ± 12.16 55.76 ± 10.48 50.80 ± 1.53 52.14 ± 3.89 53.34 ± 5.81

Sig-Ext (d=2) 49.56 ± 15.82 52.33 ± 13.06 54.38 ± 11.36 50.87 ± 1.60 52.28 ± 4.01 53.48 ± 5.93

Meta-SVDD 71.28 ± 12.25 74.91 ± 16.48 75.24 ± 13.73 72.4 ± 16.23 86.83 ± 10.05 92.01 ± 6.45

NN-RANK 79.77 ± 11.79 83.67 ± 10.74 84.83 ± 9.95 94.07 ± 5.11 96.09 ± 3.73 96.64 ± 3.09

NN-RANK + fine-tuning 80.39 ± 12.02 84.41 ± 10.95 85.53 ± 10.20 94.65 ± 5.01 96.49 ± 3.73 96.97 ± 3.06

Table 2: Results for NRC Refset using Σ𝑠 (the higher the better).

all concept names contained in the star-modules collectively con-

stitute the extended seed signature. To generate the extended seed

signature using the Sig-Ext method, we utilized the official imple-

mentation
7
. As for Meta-SVDD, our implementation was developed

based on the source code provided by [7].

4.1 Results and Analysis

The results (mean value ± standard deviation of the two measures)

presented in Tables 1 and 2 show that embedding-based methods

outperformed their logical counterparts in the above scenarios. This

is because, the logical approaches, not being initially designed for

this particular task, omitted the ontology’s lexical information. As

it turned out, this lexical information was of key importance when

it came to evaluating the semantic relevance between concepts.

Furthermore, NN-RANK exhibited a slight performance advan-

tage over Meta-SVDD, especially when taking Σ𝑠 as the seed signa-

ture. To provide a more in-depth understanding of the workings

and effectiveness of NN-RANK in this context, we conducted a case

study using the Malaria Refset mentioned earlier. Figure 2 illus-

trates the distribution of the Malaria Refset components and other

SNOMED CT concepts in a 2-dimensional vector space. As depicted

in the figure, the Refset components exhibited a tendency to form

several smaller clusters, each containing highly semantically rel-

evant concepts. Instead of being a single large cluster, the entire

Refset comprised several concept clusters. This implies that when

two seed concepts𝐴1 and𝐴2 were provided, any concept𝐴 exhibit-

ing similarity to either 𝐴1 or 𝐴2, quantified by 𝑑 (e𝐴, e𝐴1) < 𝜖 or

𝑑 (e𝐴, e𝐴2) < 𝜖 with 𝜖 representing a small value greater than 0,

had a higher likelihood of being a component of the Refset com-

pared to another concept 𝐴 that resembled the average of e𝐴1

7
http://bit.ly/2JEaraz

and e𝐴2, denoted as 𝑑
(
e𝐴, (e𝐴1 + e𝐴2

)/2
)
< 𝜖 . NN-RANK was

specifically designed to accommodate this multi-cluster pattern

and demonstrated superior performance compared to other models

that utilized concept embeddings. The performance of NN-RANK

could be significantly enhanced when the seed signatures described

the topic from various perspectives. In the case of a high-quality

primitive seed signature such as Σ𝑠 , increasing the size of the seed

signature typically led to more accurate selection results.

4.2 Time Efficiency

In the current configuration with parameters set to |𝑁𝐶 | = 354, 256,

𝐾 = 5, 𝐷 = 200 and Cosine distance serving as the distance met-

ric, NN-RANK successfully computed Σ′ in just five seconds. In

contrast, alternative approaches such as Star-modularization and

Sig-Ext necessitated a timeframe ranging from several minutes to

even hours for performing similar computations on large-scale on-

tologies like SNOMED CT. The Meta-SVDD model, in the same

configuration, converged within five minutes. While acknowledg-

ing that our approach does incur a more substantial training dura-

tion—approximately 4 hours—for generating embedding vectors on

SNOMED CT, this investment in time is deemed justifiable within

practical applications. The rationale behind this is that the training

phase is conducted a single time, yet it has the potential to produce

significant and relevant outcomes across a multitude of applications,

extending indefinitely into future applications. Furthermore, it is

worth noting that the required training time is subject to adjustment

contingent upon the scale of the ontology, with typical instances

requiring less than one hour when the ontology comprises fewer

than 100,000 logical and annotation axioms. This capability to tailor

the training time according to the ontology’s scale enhances the

adaptability and efficiency of our approach.

http://bit.ly/2JEaraz


Figure 2: The distribution of components within the malaria

Refset and other SNOMED CT concepts is illustrated in this

figure, encompassing 170 concepts from the malaria Refset

and 1700 random concepts outside the Refset. Each data point

on the graph represents a SNOMEDCT concept, with its color

indicating its relevance to the seed signatures computed by

NN-RANK (deeper colors signifying higher relevance). The

shape of each point distinguishes its type, with a cross de-

noting Refset components and circles representing concepts

outside the Refset. Seed concepts are denoted by blue stars,

accompanied by corresponding tags. These tags correspond

to labels as follows: A - Malaria (disorder), B - Allergy to pri-

maquine (finding), C - Accidental pyrimethamine poisoning

(disorder), D - Malaria outbreak education (procedure), E -

Antimalarial drug adverse reaction (disorder).

5 CASE STUDY: ONTOLOGY ABSTRACTION

In this section, we understand how extending the input signature

with NN-RANK brings distinct advantages for the two ontology

abstraction approaches — modularization and uniform interpola-
tion. To evaluate the effectiveness of our term selection approach,

we required a test ontology with sufficient meaningful metadata.

To this end, we selected HeLiS
8
, an ALCHIQ(D) ontology that

describes knowledge related to food and activity from a nutritional

perspective. The experiment was conducted using HeLiS version

1.10, which consisted of 172,213 axioms, 277 concepts, and 50 roles.

5.1 Setup Details

First, we created 10 concept subsets from sig(O𝐻𝑒𝐿𝑖𝑆 ) to serve as

the initial seed signatures, denoted as Σ𝑟 , with set sizes ranging from
1 to 5. As the selection process was random, the chosen concept

8
https://horus-ai.fbk.eu/helis/

Figure 3: The ontology abstraction framework

names might pertain to different topics encompassed by the Helis

ontology. NN-RANK then computed the extended seed signatures

based on these initial selections.

Given that most real-world applications typically require smaller

ontology abstracts, the size of the seed signature is expected to be

relatively small. This correlation arises because the size of generated

ontology abstracts is directly proportional to the size of the input

seed signature. Consequently, we only included concept names from

Σ′ whose relevance values to the original Σ𝑟 fell within the top 10%

(i.e., by setting the threshold at 0.9). These selected concept names

were collected into the final seed signature, serving as input to the

subsequent modularization and uniform interpolation procedures.

Figure 3 illustrates the ontology abstraction pipeline employing the

term selection approach.

For our computations, we employed UI-FAME [24] to compute

Σ-uniform interpolants and OWL API to compute Σ-star-modules,

as these tools are publicly accessible. Notably, both methods pre-

served the complete logical consequences of the input signature Σ′

within O𝐻𝑒𝐿𝑖𝑆 [12, 16]. Subsequently, the abstraction results gen-

erated by these two tools using the input of Σ′ (denoted as Σ′+UI-
FAME, Σ′+Star-modularization) were evaluated using four metrics:

module size |M|, module inherent richness InhRich, module intra

distance IntraDist, and module cohesion Cohesion. A module char-

acterized by relatively smaller size, higher inherent richness, rela-

tively smaller intra distance, and higher cohesion was considered

more compact. Additionally, we conducted a comparative analysis

between Σ𝑟+Star-modularization and Σ′+Star-modularization.

5.2 Results and Analysis

We conducted a comparison between Σ′+UI-FAME and Σ′+Star-
modularization to assess the effectiveness of NN-RANK with differ-

ent abstraction methods. Table 3 provides insights into this com-

parison, revealing that UI-FAME generated more compact abstrac-
tions. Additionally, it was observed that UI-FAME exhibited sensi-

tivity to the input signature. These findings align with expectations

since locality-based modularization introduced additional terms not

present in Σ′, whereas uniform interpolation adhered to Σ′. Further
experiments with thresholds set at 0.3, 0.5, and 0.7 indicated that

the size of Σ′ did not significantly impact the compactness of the

locality-based module abstraction.



Metrics K=1 K=5

Star-modularization UI-FAME Star-modularization UI-FAME

|M| 171 ± 14 20 ± 7 174 ± 15 18 ± 8
InhRich 2.92 ± 0.12 2.1 ± 1.25 4.08 ± 0.17 3.75 ± 0.49

IntraDist 49683.90 ± 94.61 618.75 ± 617.87 49798.70 ± 278.77 289.50 ± 344.26
Cohesion 0.08 ± 0.01 0.19 ± 0.09 0.08 ± 0.00 0.15 ± 0.10

Table 3: Module Compactness Evaluation (Using the top 10% of Σ′ as input). |M|: The total number of concepts, roles, and

individuals in M. InhRich: The average number of subclasses per class. IntraDist: The overall distance between the entities in

the module. Cohesion: The degree to which entities are interrelated within the module.)

Term selection plays a crucial role in allowing users to expand

seed signatures in a customizable manner. In the context of uni-

form interpolation, selecting appropriate terms for a given topic is

pivotal since the semantics of the topic heavily relies on the input

terms. We have observed that insufficient input terms for uniform

interpolation can result in very small abstracts, often containing

numerous trivial axioms like 𝐴 ⊑ ⊤ or concept assertion axioms.

NN-RANK+UI-FAME demonstrates a significant ability to gener-

ate knowledge highly relevant to the specified topic. For example,

as shown in Table 4, let us consider the topic “SpecialBread”. The

relevant axioms from O𝐻𝑒𝐿𝑖𝑆 were found in O𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡 . Notably,

“SpecialBread” had five individuals, and these individuals had no

super-classes other than “SpecialBread”. Applying common sense,

we can infer that “OliveBread” can be linked to “OlivesAndOlive-

Products”, “SoyBread” to “SoyProducts”, and “MilkBread” to “MilkA-

ndDairyProducts”. These links were absent however in the logical

components of O𝐻𝑒𝐿𝑖𝑆 .

Without NN-RANK’s extension, these concepts, which are highly

relevant to the central topic “SpecialBread”, could not be preserved

in Σ𝑟+Star-modularization or Σ𝑟+UI-FAME. In contrast, NN-RANK

effectively preserved them in the seed signature based on the lex-

ical proximity of “OlivesAndOliveProducts”, “SoyProducts”, and

“MilkAndDairyProducts” to the individuals of “SpecialBread”.

In summary, NN-RANK can serve as an optimization booster for

modularization and uniform interpolation, aiding them in produc-

ing more complete abstracts. In addition, Σ′+uniform interpolation

resulted in more precise abstracts compared to Σ′+modularization.

6 CONCLUSION AND FUTUREWORK

While modularization and uniform interpolation provide effective

means to the abstraction of OWL ontologies, the process of selecting

relevant terms—designated as seed signatures— for these abstrac-

tion approaches has often posed a significant challenge, hindering

users from generating more meaningful ontology abstracts. This

paper presents an initial effort to tackle this challenge by extending

the given seed signature with carefully selected new terms, identi-

fied through embedding-based analysis of crucial metadata within

an OWL ontology. An evaluation of this approach, conducted on a

predication task involving a SNOMEDCT Refset, demonstrated that

our method consistently makes accurate selections when compared

to other term selection baselines. Finally, a case study illustrates that

our term selection approach is capable of producing high-quality

modules and uniform interpolants for OWL ontologies.

Σ𝑟 {SpecialBread}
Ofragment SpecialBread ⊑ Bread

{SoyBread, OliveBread, MilkBread,
OilBread, RyeBread}⊑ SpecialBread

Σ′@10 SpecialBread
Bread
WhiteBread
PizzaAndFocacciaBread
OlivesAndOliveProducts
SoyProducts
LegumesAndLegumeProducts
WheatFlour
WholeWheatFlour
MilkAndDairyProducts

Table 4: Term seletion for SpecialBread topic in HeLiS

The absence of standardized benchmarks remains a primary chal-

lenge when assessing the performance of term selection methods.

Therefore, it would be beneficial to create predefined query answer-

ing instances generated from the input ontology. These instances

can help verify the completeness and precision of the generated

abstracts of OWL ontologies. For a problem𝑄 that can be answered

by querying an ontology O, a satisfactory abstractM of O, given

an input signature Σ, should be capable of answering 𝑄 when 𝑄 is

relevant to Σ. Conversely, it should not be able to answer 𝑄 when

𝑄 is not relevant to Σ.
Furthermore, the quality of term selection results heavily relies

on the complexity of the OWL ontology embedding method. One

major limitation of using OWL2Vec* for term selection is its inabil-

ity to effectively capture logical information. Therefore, our current

focus is on finding ways to map OWL ontologies into vector spaces

with minimal loss of information. It’s important to note that our

current experiments have only considered concepts, but we plan to

incorporate roles in future research.
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