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Abstract
In the realm of deep learning, many neural network-based
models have emerged for recognizing argument relation-
ships. However, these approaches often focus on specific
argument-mining tasks aligned with their research goals
and don’t address all argument-mining subtasks comprehen-
sively. Moreover, previous studies tend to assess models on
a limited set of datasets from a single domain, sometimes
relying on domain-specific external knowledge, which lim-
its these methods’ practical applicability. In this paper, we
introduce LFAM, an end-to-end multi-task learning-based
argument mining model. This model identifies argument
component boundaries by using BIO labels at first. Then
combines token-level and span-level features to capture ro-
bust contextual information. Finally, it employs the bi-affine
structure for dependency parsing to represent argument re-
lationships and uses the Chu-Liu/Edmonds Algorithm to
predict argument relationship existence with maximal tree
diagrams, while achieving argument relationship classifica-
tion. We conducted experiments on six argument-mining
datasets across various domains, demonstrating the effec-
tiveness of LFAM.

1 Introduction
Argument Relation Recognition (ARR) is to identify semantic
connections among key argumentative statements within ar-
gumentative texts, while simultaneously assessing their pres-
ence and categorizing them. ARR comprises two essential as-
pects in argument mining: Argument Relation Identification
(ARI) and Argument Relation Classification (ARC). These
tasks require a deep understanding of the complex semantic
interactions among the textual components. As shown in
Fig. 1, argumentation relationship recognition serves as a
∗Corresponding Authors

crucial step. For instance, when comparing Argument text
1 and Argument text 2, it’s evident that they lack semantic
correlation. On the other hand, Argument text 4 refines the
ideas presented in Argument text 3, indicating a supportive
relationship between them. Additionally, Argument text 6
directly counters the points made in Argument text 5, em-
phasizing the role of public transportation as a vital element
in transportation choices.

Figure 1. Argumentative Relationship Recognition Task.

With the rapid rise of deep learning, numerous neural
network-based models have emerged in academic discus-
sions, focusing on recognizing argument relationships. Schol-
ars have extensively explored the connections between these
tasks, proposing various multi-task learning approaches. For
instance, Liao et al. [12] have introduced a multi-task iter-
ative training approach that encompasses three subtasks



within the argument mining domain. In parallel, Dutta et
al. [7] have advanced a pioneering prompt-based argument
relation recognition framework, which seamlessly integrates
pertinent contextual information, thereby engendering a
model characterized by robust generalizability. These ap-
proaches often involve joint training of specific sub-tasks,
each contributing distinct capabilities in the field of argu-
ment mining, ultimately leading to enhanced recognition
performance.
Nonetheless, these methods exhibit inherent limitations.

The pursuit of constructing a comprehensive end-to-end
argument-mining model remains a challenging task because
it requires solving all argument-mining subtasks at once in
a unified framework while maintaining consistent perfor-
mance. Researchers[15, 16] often choose to focus on specific
argument-mining subtasks that align with their research
goals for joint learning. This approach frequently overlooks
a thorough examination of all argument-mining subtasks.
Similarly, prevailing studies[24] typically assess model effec-
tiveness using a limited set of datasets in a specific domain,
and some researchers incorporate domain-specific external
knowledge to improve the identification process. However,
this practice may not be widely applicable in practical situa-
tions.
In light of these considerations, this paper introduces a

novel argument-mining model grounded in an end-to-end
multi-task learning model (LFAM). The model marks argu-
ment component boundaries through the application of BIO
tags. Then it conducts distinct token-level and span-level
feature interactions to capture richer contextual information.
Finally, the architecture employs the Bi-affine structure for
dependency parsing, thereby obtaining the representation
of argument relations, and leveraging the Chu-Liu/Edmonds
Algorithm to forecast the presence of argument relations
through maximal tree diagrams, while achieving argument
relation classification.

The main contributions of this paper are as follows: (1)We
propose LFAM, a comprehensive end-to-end argument min-
ing model that handles all argument mining tasks while
ensuring stable and consistent performance. (2)We use the
bi-affine structure and the Chu-Liu/Edmonds Algorithm for
dependency parsing to model argument relationships. Ad-
ditionally, we employ maximal tree diagrams to predict the
presence and category of argument relationships. (3)We con-
ducted experiments on six argument-mining datasets span-
ning various domains, illustrating the effectiveness of LFAM.

2 Related Work
The main goal of argument relation recognition is to find
meaningful connections between important statements in ar-
gumentative texts while checking if these connections exist
and sorting them into categories. Currently, the approaches

for this task can be grouped into three categories:(1) tex-
tual feature-based methods, (2) shallow feature extraction
methods, and (3) deep feature extraction methods.

2.1 Textual Feature-based Methods
Textual feature-based methods primarily rely on features
crafted through human expertise to facilitate recognition,
with these features including lexical, semantic, contextual,
and core idea constructs. Mochales et al. [14] applied human-
constructed, context-independent grammatical features to
predict argument component relationships, aligning with
grammatical rules mirroring the rhetorical and structural
attributes commonly found in judicial texts. These textual
features have been employed diversely in the literature. For
instance, Persing et al. [22] extracted structural, grammatical,
and lexical features for each argument, using positional in-
formation for structural attributes and character analysis for
lexical features. Nguyen et al. [17] augmented their model’s
performance by combining topic-related information from
the paper with features captured from a contextual window
of sentences surrounding the argument. Paul et al. [20] intro-
duced an unsupervised graph-based ranking approach, in-
corporating multi-hop knowledge from external sources into
their model and utilizing a cross-attention mechanism [10]
to enhance text and knowledge representations, leading to
improved argumentation relation recognition across datasets.
While these methods can improve performance in domain-
specific contexts, they need manual feature extraction and
setup, limiting their generalizability.

2.2 Shallow Feature Extraction Methods
Shallow feature extraction methods primarily employ classi-
cal early machine learning models. Researchers choose the
different traditional machine-learning models based on the
feature patterns found in various datasets. Subsequently, la-
beled data is constructed using these selected feature patterns
to train the argument relation recognition model. Ghosh et
al. [9] utilized supervised machine learning with ten-fold
cross-validation for argument relation classification. They
introduced a novel approach based on logistic regression and
decision trees. Rosenthal et al. [25] conducted experiments
with methods involving plain bayes, logistic regression, and
decision trees, with their findings showing that the logistic
regression-based classifier outperformed the others. Carstens
et al. [5] proposed a relationship-based argument-mining
method that initially classifies sentences based on their mu-
tual relationships, offering a new perspective on argument-
mining relationships. Stab et al. [26] proposed a solution
using a traditional machine learning approach, employing a
binary support vector machine for making predictions about
relationships and classifying argument relationship types.
Wang et al. [29] applied a Conditional Random Fields (CRF)-
based sequential model for sentence-level or paragraph-level
text prediction. However, methods relying on shallow feature



extraction are typically structurally simple, lack generaliz-
ability across diverse datasets, and exhibit suboptimal overall
recognition performance, thereby limiting their widespread
adoption.

2.3 Deep Feature Extraction Methods
Deep feature extraction methods employ deep modeling
techniques based on pre-trained language models, often in-
volving the utilization of pre-trained language models and
frequently adopting multi-task learning approaches[6, 31].
This strategy is employed to significantly enhance the per-
formance of recognizing argument relationships. Opitz et
al. [18] utilized the BERT model as the foundational word
vector and introduced relevant connectives based on various
argument relationships to enrich the contextual information
within the original argumentative text. They transform the
task from predicting argument relations to assessing the
logical coherence of sorted pairs of text. Experimental re-
sults underscored the method’s effectiveness, especially in
improving the accuracy of predicting objection-type argu-
ment relations. Liao et al. [12] proposed a multi-task itera-
tive training method, addressing three sub-tasks related to
the argument mining domain. Dutta et al. [7] introduced a
novel prompt-based argumenta relation recognition method
that integrates contextual information. This model possesses
several attributes, including the ability to recognize argu-
ment relations in the domain of argument mining and high
generalizability. Typically, these methods are jointly trained
with specific subtasks within the argument mining domain
to enhance recognition outcomes through complementary
performance. However, it’s important to note that these ap-
proaches may not include all four subtasks of argument
mining, potentially limiting their broader applicability.

3 Problem Definition
LFAM is designed to tackle all fundamental subtasks within
the realm of argument mining: (1) boundary segmentation,
(2) component recognition, (3) relation identification, and
(4) relation classification. Firstly, we use the token sequence
𝐸 = {𝜔1, ..., 𝜔𝑛} denote the thesis text, where 𝜔𝑖 signifies
the 𝑖-th token in the thesis text. For the boundary segmen-
tation task, we employ the notation < 𝑠, 𝑒 >∈ S to signify
the range of selected argument components, where 𝑠 and
𝑒 represent the index of the starting and the ending token
position of the argument component respectively, and S
constitutes the set containing these argument components.
For the component recognition task, we employ the triple no-
tation < 𝑠, 𝑒, 𝑐 >∈ C, where 𝑐 indicates the type of argument
component associated with the < 𝑠, 𝑒 >, and C represents a
set of pre-defined argument component types. For the rela-
tion identification task, it can be expressed as a quintuple
< 𝑠𝑠𝑟𝑐 , 𝑒𝑠𝑟𝑐 , 𝑠𝑡𝑎𝑟 , 𝑒𝑡𝑎𝑟 , 𝑏 >∈ B, where 𝑠𝑠𝑟𝑐 and 𝑒𝑠𝑟𝑐 indicate the
source argument component, 𝑠𝑡𝑎𝑟 and 𝑒𝑡𝑎𝑟 indicate the target

argument component, the variable 𝑏 denotes the presence or
absence of a relationship, andB represents a bicategorical set
that including the existence and non-existence of argumen-
tative relations. Finally, the relation classification task is also
denoted as a quintuple < 𝑠𝑠𝑟𝑐 , 𝑒𝑠𝑟𝑐 , 𝑠𝑡𝑎𝑟 , 𝑒𝑡𝑎𝑟 , 𝑟 >∈ R, where
𝑟 signifies the specific type of relationship between two ar-
gument components, and R denotes the set of predefined
argument relation types.

4 Model
The LFAM framework comprises four essential components:
(1) a text embedding layer, (2) a feature extraction layer,
(3) a bi-affine layer, and (4) a maximal tree map layer. The
text embedding layer leverages the semantic knowledge of a
pre-trained model to encode each token within the original
thesis text while employing BIO tags for boundary segmen-
tation. The feature extraction layer employs Bidirectional
Long Short-Term Memory (BiLSTM) to boost interactions
at both the token level and span level, thus addressing the
component identification subtask. The bi-affine layer em-
ploys Bi-affine operations to calculate the probability of a
directed edge connecting any two spans. Subsequently, the
maximum tree graph layer utilizes the maximum tree graph
algorithm to construct an argument structure graph, for
both relationship identification and relationship classifica-
tion. Fig. 2 illustrates the framework of LFAM.

4.1 Text Embedding Layer
We employ the Longformer-base[3] pre-trained language
model to encode the thesis texts, which is a suitable choice
for processing token-level argumentative content. Given the
initial input thesis text 𝐸 = {𝜔1, 𝜔2, ..., 𝜔𝑛}, we transform it
into a textual representationE = {𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2, ..., 𝑡𝑜𝑘𝑒𝑛𝑛}.
To capture richer semantic knowledge, it is worth noting
that the pre-trained language model predominantly stores
semantic information in its higher-level network layers. Con-
sequently, we concatenate the feature information from the
last four layers of the model to create a representation for
each token 𝑡𝑜𝑘𝑒𝑛𝑖 = [𝐿𝐹 (9)𝑖

, 𝐿𝐹
(10)
𝑖

, 𝐿𝐹
(11)
𝑖

, 𝐿𝐹
(12)
𝑖
] ∈ R (4ℎ) .

Subsequently, we apply an MLP layer to reduce the dimen-
sionality of each token to the standard dimensionℎ. Addition-
ally, an essential token "[𝐶𝐿𝑆]" is the beginning of all tokens,
serving as a global attention focal point for the Longformer
model to capture comprehensive argumentation knowledge
from the entire text.
Next, the boundary segmentation is addressed through

the utilization of BIO labels, where "B" signifies the "Begin"
of a span, "I" denotes an "Intermediate" position within the
span, and "O" indicates other characters, typically with the
first "O" adjacent to an "I" indicating the end of the span. To
enhance the appropriateness of boundary segmentation, we
refine BIO annotations by introducing the following rules: (1)
if the initial label in the sequence is "I," it is modified to "B";



Figure 2. The overview of our LFAM framework.

(2) when the sequence begins with a non-labeled position
and the current label is "I" while the previous one is "O," the
current label is updated to "B." As illustrated in Fig. 3, in the
case of the label "I" at ordinal number 4, it adheres to the
optimization rule as the previous label is "O" and this "I" is
the first one immediately following an "O", so it is modified
to "B". Finally, three valid span divisions are obtained as a
result of this process.

Consequently, from the vectorized textual representation
E, we obtain the subsequent representation for the argument
span denoted as 𝑆𝑝𝑎𝑛𝑖 𝑗 = (𝑖, 𝑗) |𝑖, 𝑗 ∈ [0, 𝑛], 𝑖 ≤ 𝑗 ∈ S, with
S representing the set encompassing all possible spans.

4.2 Feature Extraction Layer
The feature extraction layer captures feature information
at both token and span levels. Initially, token-level feature



Figure 3. Optimized BIO annotation diagram.

interaction is accomplished using BiLSTM. The outputs from
the bidirectional hidden layers are concatenated to form the
feature representation for the input vectors at each time step.
Subsequently, we compute the average of all token feature
vectors within the span to obtain the feature representation
for each span. The formula is as follows:

𝑡𝑜𝑘𝑒𝑛ℎ𝑡 =
→

𝑡𝑜𝑘𝑒𝑛ℎ𝑡 ⊕
←

𝑡𝑜𝑘𝑒𝑛ℎ𝑡 (1)

span𝑖 𝑗 =
𝑡𝑜𝑘𝑒𝑛𝑖 + ... + 𝑡𝑜𝑘𝑒𝑛 𝑗

𝑗 − 𝑖 + 1 , (2)

where
→

𝑡𝑜𝑘𝑒𝑛ℎ𝑡 and
←

𝑡𝑜𝑘𝑒𝑛ℎ𝑡 represent the feature output of
the forward and backward hidden layers respectively, ⊕
denotes two square splice operations on two vector vectors,
𝑡𝑜𝑘𝑒𝑛ℎ𝑡 denotes the hidden layer feature output of the token
at each time step 𝑡 , and 𝑠𝑝𝑎𝑛𝑖 𝑗 denotes the span feature
representation obtained after averaging each token feature
vector within the span.

Subsequently, we conduct span-level feature interactions
by employing BiLSTM as the foundational structure. We
then reduce the interacted span features dimension to align
with the number of argument component types present in
the corresponding argument dataset and proceed to predict
the output. The formula is as follows:

span𝐵𝑖𝐿𝑆𝑇𝑀𝑖 𝑗 = 𝐵𝑖𝐿𝑆𝑇𝑀 (span𝑖 𝑗 ) (3)

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑝𝑟𝑒𝑑 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (span𝐵𝑖𝐿𝑆𝑇𝑀𝑖 𝑗 )), (4)

where span𝐵𝑖𝐿𝑆𝑇𝑀
𝑖 𝑗 represents the span feature vector from

the span-level feature interaction, and𝑀𝐿𝑃 denotes the func-
tion of dimensionality transformation. Finally, we obtain
the probability of the corresponding argument components
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑝𝑟𝑒𝑑 by means of the softmax function.

4.3 Bi-affine Layer
The bi-affine layer employs a bi-affine structure primarily for
parsing dependencies within argument information. Depen-
dency syntactic parsing is centered on capturing the syntac-
tic structure of text by examining the relationships among
different components within a linguistic unit, providing a
more precise understanding of text segment connections.
Importantly, the bi-affine Layer offers faster training and in-
ference speeds compared to conventional models relying on

recurrent and convolutional neural networks. We apply the
bi-affine structure to graph-based dependency syntactic anal-
ysis, which effectively addresses dependency issues between
two nodes. It can predict the presence or absence of edges
between two nodes and determine dependency edge labels,
including the dependency relation and the dependency la-
bel. Typically, syntactic dependency parsing occurs within a
sentence, but in argument text parsing, each argument span
is treated as a node in the graph.

The initial step involves determining the presence of edges
connecting nodes. If we consider an argument text with 𝑛

argument component nodes, including a virtual head node,
the total number of nodes is 𝑑 = 𝑛 + 1. For each node, we
generate a score vector denoted as 𝑠𝑖 ∈ R𝑑×1. All argument
component nodes can be organized into a scoring matrix
of size R𝑑×𝑑 . Then we employ an MLP to reconfigure the
argument component feature vector span𝐵𝑖𝐿𝑆𝑇𝑀

𝑖 𝑗 , which is
obtained in the preceding section. The operation results in
a vector ℎ (𝑠𝑟𝑐−ℎ𝑒𝑎𝑑 )

𝑖
∈ R𝑘×1, where typically, 𝑘 is of a small

magnitude. Subsequently, this vector is inputted into the
affine layer. In this way, we can effectively mitigate the risk
of overfitting. The formula is as follows:

ℎ
(𝑠𝑟𝑐−ℎ𝑒𝑎𝑑 )
𝑖

= 𝑀𝐿𝑃 (𝑠𝑟𝑐−ℎ𝑒𝑎𝑑 ) (𝑠𝑖 ) (5)

ℎ
(𝑡𝑎𝑟−𝑡𝑎𝑖𝑙 )
𝑗

= 𝑀𝐿𝑃 (𝑡𝑎𝑟−𝑡𝑎𝑖𝑙 ) (𝑠 𝑗 ) (6)

𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗
= 𝐻

(𝑠𝑟𝑐−ℎ𝑒𝑎𝑑 )
𝑖

𝑊𝑠ℎ
(𝑡𝑎𝑟−𝑡𝑎𝑖𝑙 )
𝑗

+ 𝑏𝑠 (7)

𝑃𝑖 𝑗 = 𝑓 (𝑠𝑖 𝑗 ), (8)

where two𝑀𝐿𝑃s are dedicated to the source node and the
target node respectively, 𝐻 (𝑠𝑟𝑐−ℎ𝑒𝑎𝑑 )

𝑖
∈ R𝑑𝑥𝑘 represents a

matrix of feature vectors ℎ, while these vectors are obtained
by stacking the features from 𝑑 argument components after
applying quadratic encoding through an 𝑀𝐿𝑃 , 𝑊𝑠 is the
weight matrix, 𝑏𝑠 is the bias vector, 𝑠 (𝑒𝑑𝑔𝑒 )

𝑖 𝑗
is the score of

the dependency edge between argument component 𝑖 and
argument component 𝑗 . It is necessary to pass the dependent
edge score 𝑠𝑖 𝑗 into the nonlinear function 𝑓 to obtain the
probability distribution of dependent edges. It should be
clarified that 𝑓 is a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function for determining the
existence of dependent edges and 𝑓 is a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function
for determining dependent labels.
This results in a probability distribution of dependency

edges 𝑃𝑑𝑒𝑥𝑖𝑠𝑡𝑠 , where 𝑑 represents the number of nodes. When
assessing dependency labels, the quadratic encoding through
MLP scales down to match the number of relationship types
in the corresponding dataset and the subsequent steps re-
main consistent with the prior operations to obtain the dis-
tribution of dependency labels 𝑃𝑑

𝑙𝑎𝑏𝑒𝑙
.



4.4 Maximum Tree Layer
The maximal tree graph layer is designed to decode the
graph representing the probability distribution of depen-
dency edges obtained in the preceding subsection. This ap-
proach is inspired by theminimum tree graphmethod, which
aims to identify a spanning tree within a directed weighted
graph while designating a particular node as the root node
to minimize the total sum of edge weights.
In the argument relations identification task, we repre-

sent the directionality of the argument relations through a
directed graph. Therefore, each argument component serves
as a node within the directed graph, and the directed edges
between nodes represent argument relations. To keep seman-
tics consistent, each argument node has a single directed
edge pointing to other argument nodes. However, multiple
argument nodes can point to the same argument node, mean-
ing each node has only one outgoing edge but can receive
multiple incoming edges.

Figure 4.Maximum tree diagram.

Different from the conventional concept of minimal tree
graphs based on original edge weights, where the smallest
edge weights are selected to minimize usage costs. In our
work, we extent incorporate the probability distribution of
dependent edges. Consequently, we retain the directed edges
with larger edge weights within the argument graph. As a
result, the thesis text can be transformed into a tree graph.
Fig. 4 shows an example of a directed graph producing a
maximal tree graph. The five nodes in the graph and the
dark edges between them form a basic maximal tree graph,
of which node 𝑉1 is the root node. There is only one path
to the other nodes from 𝑉1 and the sum of the numbers on
all the dark-colored paths is also the maximum that can be
generated for the entire graph.
We apply the Chu–Liu/Edmonds algorithm[28], known

for its time complexity of 𝑂 (𝑉𝐸) and its status as the fastest
minimal tree graph algorithm available. Utilizing the max-
imum tree diagram algorithm, we analyze the dependency
edge probability distribution 𝑃𝑑𝑒𝑥𝑖𝑠𝑡 to derive the correspond-
ing𝐺𝑡𝑟𝑒𝑒

𝑒𝑥𝑖𝑠𝑡 . Subsequently, we discard connecting edges that
start or end at the virtual root node to obtain the predicted

argument relations. These predictions are based on the distri-
bution of dependent labels 𝑃𝑑

𝑙𝑎𝑏𝑒𝑙𝑠
, which select the argument

relationship with the highest probability.

4.5 Loss Function
For the four subtasks of argument mining, we use a combi-
nation of multiple task loss functions for model parameter
optimization, the loss function is defined as follows:

L = 𝜆𝑠L𝑠 + 𝜆𝑐L𝑐 + 𝜆𝑏L𝑏 + 𝜆𝑟L𝑟 (9)

where L𝑖 (𝑖 ∈ 𝑠, 𝑐, 𝑏, 𝑟 ) are the loss functions correspond-
ing to the boundary segmentation, component recognition,
relation identification, and relation classification subtasks,
respectively. 𝜆𝑖 (𝑖 ∈ 𝑠, 𝑐, 𝑏, 𝑟 ) are the hyperparameters corre-
sponding to the loss function for each subtask.

5 Experiment
5.1 Datesets
In order to validate the adequacy of LFAM, we conduct ex-
periments in five benchmark datasets from multi-domain:
AAEC-Essay[27], AAEC-Para[8], AASD[1],MTC[21], CDCP[19]
and AbstRCT[13]. The detail of the datasets in App. A and
the detail about the experiment setup in App. B.

5.2 Baselines
To evaluate the performance of LFAM, we compare LFAM
with the following methods:
• ILP-Joint[27] is a joint learning model based on inte-
ger linear programming.
• BLCC(BiLSTM-CRF-CNN)[8] is an analytic model
of argument structure based on sequence labeling.
• LSTM-ER[8] is an end-to-end model based on tree
LSTM.
• BiPAM-syn[30] is an argument mining model based
on pre-trained language models using syntactic infor-
mation augmentation.
• Cross-ST[16] is an incremental learning approach
based on argumentation datasets, and for the sake of
fairness of comparison nature, only the experimental
results of a single dataset are selected.
• Pointer-Net[11] utilizes a pointer network for the
prediction of argument components and relationships.
• Span-LSTM[23] is a model that combines textual in-
put sequences and argumentative markers for encod-
ing.
• Bert-Trans[2] is an argument mining model based on
neural transitions of parser states.
• TSP[15] is a graph-based non-tree-structured argu-
ment parsing and bisimulation of attention struct
• Rel.RoBERTa[13] is an argumentation model based
on the RoBERTa parser.
• Rel.SciBERT[13] is an argumentation model based
on the SciBERT parser.



Dataset Method Boundary Component Link Relation
Micro Macro Micro Macro

AAEC-Essay

BLCC - 63.23 - - 34.82 -
LSTM-ER - 66.21 - - 29.56 -
Cross-ST 85.21 75.54 66.59 55.66 55.17 42.30
LFAM 85.23 75.21 66.07 55.84 55.36 44.16

AAEC-Para

BLCC - 66.69 - - 39.83 -
LSTM-ER - 70.83 - - 45.52 -
BiPAM-syn - 73.5 - - 46.4 -
Cross-ST - 76.48 - - 59.55 -
LFAM 85.55 75.51 66.13 56.38 55.52 44.57

AASD Cross-ST 87.10 69.06 58.06 54.82 49.83 42.10
LFAM 87.23 71.51 59.44 59.80 53.99 46.45

MTC Cross-ST 87.68 78.83 73.77 53.43 45.92 33.07
LFAM 86.70 78.80 74.70 55.47 48.66 38.73

CDCP Cross-ST 82.88 68.90 65.78 31.94 31.94 16.26
LFAM 83.13 68.13 64.63 33.16 33.16 16.87

AbstRCT Cross-ST 70.29 64.16 45.04 39.35 38.38 31.91
LFAM 70.33 64.40 44.90 39.02 38.04 33.67

Table 1. Experiment result of subtasks containing boundary delineation on Datasets.

5.2.1 Experimental Results of End-to-end Modeling.
Our experiments are based on the results of ten random
number seeds taking the average, with the best experimental
results bolded. Tab.1 shows a comparison of the performance
of the baseline model and LFAM on the six datasets when
the boundary segmentation subtask is included, as can be
found from the experimental results:

(a) The LFAMmodel performs better than the best existing
model inmost of the evaluationmeasures across five datasets:
AAEC-Essay, AASD, MTC, CDCP, and AbstRCT. Specifically,
we see the biggest improvements in the three evaluation
measures for relationship identification and classification,
which are 4.98%, 4.16%, and 5.66%, respectively. On the AASD
dataset, our LFAM model even outperforms the baseline
model in all six evaluation measures, demonstrating its wide-
ranging effectiveness.
(b) Despite the challenge of errors transferring between

the four argument mining tasks, where how well you do
in one task affects the others, and performance tends to
decrease as you go along, we found something interesting.
When the performance of the boundary task and the con-
stituent task are similar, the performance of the LFAMmodel
does not decrease obviously from recognizing constituents
to recognizing relations compared to other models. This ad-
vantage helps it to achieve better performance in predicting
argument relations.

(c) The performance on the AAEC-Para dataset is not ideal,
doing better than models like BiPAM-syn but falling short of
the Cross-ST model. This situation can be attributed to the
fact that the AAEC-Para dataset is derived from a segmented
version of the AAEC-Essay dataset, which is typically shorter.
Consequently, the LFAM model’s robust feature retrieval
and extraction capabilities, may not be as effective in this
condition

Dataset Method Component Link Relation
Micro Macro Micro Macro

AAEC-Para

ILP-Joint - 82.6 58.5 - -
Pointer-Net - 84.9 60.8 - -
Span-LSTM - 85.7 67.8 - -
Bert-Trans - 88.4 70.6 - -
Cross-ST w.map 88.40 86.82 69.33 68.14 57.11
Cross-ST 87.44 79.55 67.16 66.29 55.84
LFAM 87.08 79.47 68.65 67.49 55.63

AASD Cross-ST 77.78 65.90 63.96 58.30 49.22
LFAM 80.71 69.04 69.47 64.12 53.93

MTC

ILP-Joint - 85.7 48.6 - -
Pointer-Net - 81.3 57.7 - -
Span-LSTM - 83.5 57.5 - -
Cross-ST w.map 95.65 93.08 65.06 57.89 57.34
Cross-ST 89.85 83.70 65.06 55.23 39.27
LFAM 91.22 86.07 69.45 60.69 46.19

CDCP

TSP - 78.91 34.04 - -
Bert-Trans - 82.5 37.3 - -
Cross-ST 81.03 82.34 40.15 40.11 20.39
LFAM 80.04 78.54 41.81 41.74 21.20

AbstRCT

Rel.RoBERTa - - - 48.72 17.53
Rel.SciBERT - - - 58.21 36.76
Cross-ST 89.37 67.57 59.65 57.10 47.12
LFAM 89.90 68.32 60.36 57.73 49.00

Table 2. Performance comparison of the boundary delin-
eation subtask without boundary delineation on Datasets.

5.2.2 Experimental Results of Non-End-to-end Mod-
eling. In addition, to compare the task performance with
other non-end-to-end models, this section uses the golden
result on the first subtask task boundary segmentation by
directly using the golden result as the boundary segmenta-
tion and conducting experiments on the next three subtasks.
Tab. 2 demonstrates the performance comparison between
the baseline model and LFAM on the five datasets without
boundary segmentation subtasks, as can be found from the
experimental results:
(a) The LFAM model performs better than other models

in most metrics on the AASD, MTC, CDCP, and AbstRCT



Dataset Method Boundary Component Link Relation
Micro Macro Micro Macro

AAEC-Essay LFAM 85.23 75.21 66.07 55.84 55.36 44.16
LFAM w/o. tree 84.28 74.93 65.09 54.54 54.07 42.30

AAEC-Para LFAM 85.55 75.51 66.13 56.38 55.52 44.57
LFAM w/o. tree 84.76 74.78 65.01 55.49 54.80 42.15

AASD LFAM 87.23 71.51 59.44 59.80 53.99 46.45
LFAM w/o. tree 87.21 72.63 59.93 54.87 50.61 44.21

MTC LFAM 86.70 78.80 74.70 55.47 48.66 38.73
LFAM w/o. tree 86.15 77.97 73.46 54.39 47.46 37.06

CDCP LFAM 83.13 68.13 64.63 33.16 33.16 16.87
LFAM w/o. tree 82.71 68.31 64.90 32.18 32.04 16.33

AbstRCT LFAM 70.33 64.40 44.90 39.02 38.04 33.67
LFAM w/o. tree 68.76 62.82 43.89 35.01 33.99 30.03

Table 3. Impact of maximum tree layers on LFAM Models.

datasets. Although it falls short of the baseline model in two
metrics within the CDCP dataset’s component recognition,
we see improvements in all six metrics for the AASD, MTC,
and AbstRCT datasets. This shows that the LFAM model is
quite effective across a range of situations.
(b)In the AAEC-Para dataset, many researchers simpli-

fied the process by combining "Claim: Against" and "Claim:
For" into a single "Claim" label during training and predic-
tion, which we call "w. maps" in this section. Specifically, the
Cross-ST w. map model performs worse than the Bert-Trans
model in both component macro and link evaluation metrics.
However, when we analyze a more detailed analysis of argu-
ment components, the LFAMmodel performs better than the
Cross-ST model in the macro metrics for relationship identi-
fication and relationship recognition but is slightly behind
in the other three metrics. Since the LFAM and Bert-Trans
models use different architectures, the former is based on
graph parsing and the latter on parser transformations. It
suggests that combining these approaches in the future for
argument mining tasks might lead to improved results in
parsing argumentative texts.

(c)In the MTC dataset, we first changed the labels of argu-
ment parts to "statement" and "premise" categories, and we
mapped argument connections to "support" and "attack" cat-
egories. In this setup, the Cross-ST w. map model performed
the best for these two contrasting categories. But when we
looked at the original labels, the LFAMmodel performsmuch
better than the Cross-ST model in all aspects, showing that
the LFAM model is effective on the MTC dataset.
To sum it up, the LFAM model performs really well com-

pared to both the end-to-end and non-end-to-end models,
especially in tasks like relationship identification and rela-
tionship classification in argument recognition. We further
demonstrate the superiority of the LFAM model in the task
of argument relationship classification in the App. ??.

5.3 Ablation Study
Multi-task learning can be really helpful in handling dif-
ferent argument-related tasks together as seen in previous

studies. In this part, we’re looking at how having maximal
tree layers affects the argument mining task. Tab. 3 shows
the impact of removing these layers on the argument mining
task across five datasets. The results are quite clear: when
it comes to identifying and classifying argument relation-
ships, all three performancemetrics drop noticeably, with the
largest decreases being 4.93%, 4.05%, and 3.63%, respectively.
This confirms that having maximal tree layers is crucial for
recognizing argument relationships. For the tasks of bound-
ary segmentation and component recognition, things are a
bit different. Only some metrics in the CDCP dataset show
small improvements, while the other four datasets see a de-
cline in performance. This can to some extent support the
performance assistance of the maximum tree layer for the
first two subtasks, and also demonstrate the advantages of
multi-task learning.

5.4 Case Study
To further validate the effectiveness of the LFAM model, a
typical case from the MTC dataset is selected for analysis in
this section, the detail is in App. C.

6 Conclusion
In this paper, we focus on the argument mining task, espe-
cially on argument relation recognition. Aiming at the lack
of a complete end-to-end model and the lack of validation of
model generalization in multiple domain datasets in exist-
ing methods, we propose an end-to-end multi-task learning-
based argument relation recognition model LFAM. LFAM
incorporates the semantic information of the pre-trained
model well, provides a suitable deconstruction of the four
subtasks of argument mining, and the maximal tree graph
provides good performance of the argument relation identi-
fication and argument relation identification classification.
The experimental results show that the LFAMmodel exhibits
excellent performance and wide application potential on six
argument mining datasets in multiple domains.
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A Datasets
The statistics of the three datasets are shown in Tab. 4, where
the AAEC-Essay dataset and the AAEC-Para dataset are
denoted together as the AAEC dataset.
Considering the small amount of data in the AASD and

MTC datasets, which are not divided into fixed training and
testing sets, five-fold cross-validation[4] is applied to the
training data to iterate the model parameters to ensure the
reliability of the experiments, and the AAEC, CDCP, and
AbsRCT datasets are processed in the normal training way.

B Experimental Setup
In the experiments, the model is optimized using the Adam
optimizer, and a linear hot-start mechanism is adopted. The
batch size is set to 4, the dropout is set to 0.1, the hidden
layer dimension is set to 768, the number of training epochs



Dataset Argumentative Component/Quantity Argumentative Relationships / Quantity

AAEC
Major
claim
751

Claim:
For
1228

Claim:
Against
278

Pre.
3932

Support
3613

Attack
219

AASD Pro.
110

Ass.
88

Res.
73

Obs.
11

Mea.
63

Des.
7

Sup.
124

Att.
0

Det.
130

Add.
27

Seq.
11

MTC Proponent
451

Opponent
125

Sup.
263

Exa.
9

Reb.
108

Undercut
63

CDCP Policy
815

Value
2160

Fact
746

Testimony
1026

Ref.
32

Reason
1307

Evidence
46

AbstRCT Major Claim
93

Claim
993

Evidence
2193

Sup.
1762

Att.
60

Partial-Attack
238

Table 4. The label distribution statistics for the datasets.

Figure 5. Case study.

is set to 30, the validation is performed every 2 epochs,
and the learning rate is set to 1𝑒 − 5. The hyperparame-
ters 𝜆𝑖 (𝑖 ∈ 𝑠, 𝑐, 𝑏, 𝑟 ) of the four sub-task loss functions of
argument mining were selected, and the values of the hyper-
parameters were varied for each dataset.
we use two evaluation metrics, Macro-F1 and Micro-F1.

Macro-F1 calculates the F1 scores under each category of
labels separately and takes the average value, while Micro-F1
considers all labels uniformly and counts the F1 scores of all
labels directly. The Macro-F1 score is used for all four sub-
tasks, and the Micro-F1 score is additionally used for the two
key subtasks of component identification and relationship
classification.

C Case Study
Fig. 5 shows the visualization of the argument structure of
the data under the twomodels and the real labels. Each ellipse
represents a component of the argument, and the connecting
arrows indicate the relationship between the two compo-
nents of the argument. It is clear that the Cross-ST model
incorrectly predicts the type of argument component "but
given the cost of the star player, one would have expected
more" and the type of argument relationship with "the team
ended up in third place" as shown by the orange color in
the figure above. The LFAM model corrects for these types
of arguments, as shown in orange in the figure above. The
LFAM model corrects these confusing argument structures
by determining that there should be an undercut relationship
between the two argument components that refutes but does
not completely negate the argument and that the argument
component in the lower right corner should belong to the
supporter proponent, as shown in green in the figure below.
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