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ABSTRACT

Knowledge Graph (KG) construction is a cumbersome task when
performed manually. Instead, KGs are commonly extracted from
existing knowledge sources, such as natural language text. With
the emergence of large language models (LLMs), machine reading
has taken a leap forward, but still several challenges remain. In
particular, the task of extracting accurate statements from text is
still an open research problem, and the work presented in this paper
focuses on an important aspect of document-level fact extraction as
a step toward solving that problem. To allow for flexibility in terms
of input representations and emergence of new unseen terminol-
ogy, we set our experiments in a zero-shot setting using masked
language models (MLMs), rather than probing LLMs for facts seen
in training. We first explore the correlation between the pseudo-log-
likelihood (PLL) scores for various statements and their factuality.
For statements derived from the DocRED data set, out-of-the-box
MLMs will generally assign higher PLL scores to them if they are
supported by some document. This correlation stayed consistent
even when taking the influence of various high-level features into
account. Since PLL cannot be calculated for non-token inputs like
soft prompts, we additionally use these results to search for a suit-
able approximation to PLL with similar behavior. We examine four
similarity measures for vectors and probability distributions, and
find that of them, cosine similarity has the highest correlation to
PLL. Finally, we outline how the knowledge gained from this explo-
rative study can be used in future work on zero-shot document-level
fact extraction for KG generation.
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1 INTRODUCTION

A Knowledge Graph (KG) is a labeled, directed graph where the
nodes are entities of interest and all edges represent the existence
of a typed relation between two of those entities. A KG can also
be viewed as a set of subject-predicate-object triples representing
the edges of the graph. KGs are used for many tasks, such as infor-
mation retrieval and storage, and can be incorporated into larger
systems for tasks like recommendation and question answering.
KGs are often structured according to an ontology to provide added
semantics to the entities and relations, thus making up a knowledge
base (KB) that can be queried and reasoned over. However, con-
structing such a KG is not an easy task. Commonly, the knowledge
to be included in the KG already exists in an unstructured form as
natural language text. In such cases, KG construction becomes a
task of knowledge extraction from such sources, rather than gather-
ing and constructing the KG from scratch. Automating this task is
particularly important when constructing KGs for certain (narrow)
knowledge domains, such as an enterprise KG or a KG for a very
specific industry domain, where the use of other techniques, such
as crowdsourcing, is not possible.

In this work, we explore the hypothesis that this knowledge
extraction can be supported by masked language models (MLMs),
a type of large language model (LLM) trained using a masked lan-
guage objective [5]. The role of these MLMs would be to enable fact
extraction from unstructured text documents. In order to minimize
information leakage [6], we assert that an effective use of MLMs
for this fact extraction cannot include specialized pre-training or
fine-tuning. For instance, consider a scenario where a MLM extracts
facts from news stories about election results in order to model
them. To support fact checking those stories, the information in
each story must be modeled correctly but separately. Given that
multiple stories would discuss the same named entities and the
same events, fine-tuning a MLM on any story risks leaking infor-
mation about the entities it contains, yielding incorrect extractions
for other stories. In this scenario, it should be clear that we are
not concerned with the ground truth of a statement; rather, for
the scope of this paper, we consider a statement to be true if it is
supported by the document it was extracted from.

However, this fact extraction task as described here does not
have a straightforward solution, especially since we wish to min-
imize information leakage by extracting facts directly from the
underlying documents. In this paper, we attempt to craft a solution
by looking at the problem from a language modeling point of view.
Wang and Cho [20] show how the MLM BERT [5] can be used as a
traditional language model (for generating text) through the use
of pseudo-log-likelihood (PLL) scores. Salazar et al. [17] take this
idea further and demonstrate the relationship between PLL scores
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and linguistic acceptability [4] for short statements, better enabling
the application of out-of-the-box MLMs to downstream tasks like
translation. In order for MLMs to be applied to our problem in a
robust way, we believe that three criteria must be met:

(1) There should be a strong correlation between scores and
document support.

(2) The scoring mechanism should be able to handle out-of-
vocabulary (OOV) inputs.

(3) Information leakage from the MLM’s training data should
not influence the scores.

We demonstrate criterion 1 in Section 4.1 for PLL. Criterion 2 is
based on the idea that if the MLMs should not be fine-tuned on the
content of the documents, then the only way to further contextu-
alize the predictions is through the input to the MLM. Thus, we
believe that techniques like soft or continuous prompting [2] are
necessary to achieve a reliable level of accuracy. However, these rely
on OOV vector inputs which, as discussed further in Section 3.5,
prevents PLL from being used in this setting. Therefore, we addi-
tionally search for suitable methods of approximating PLL which
do work for soft prompts. Criterion 3 is left to future work, but
is nonetheless important to mention. The experiments in this pa-
per mostly rely on the information already learned by the selected
MLMs to perform the scoring, and should be viewed in that light.
Instead, we discuss in Section 5.2 one idea of how to make a MLM
“blind” to named entities present in statements to remove some bias.
For now, we focus on understanding and estimating PLL in its most
common form for zero-shot applications.

With these challenges in mind, we perform an exploratory study
in order to answer the following research questions:

RQ1: CanPLL scores be used to distinguish supported (factual w.r.t.
some document) statements from unsupported statements?

RQ2: Given a statement which corresponds to a relation between
two entities, can the PLL score for that statement indicate
whether the types of those entities are consistent with the
semantics of the relation?

RQ3: Does the fact that some entity mentions span multiple tokens
have an effect on PLL scores?

RQ4: In situations where PLL cannot be calculated, how well can
vector or probability similarity measures estimate it?

We consider the following points to be our main contributions
with this work:

e An augmentation of the DocRED data set into a collection of
positive and negative samples to capture document support
(or a lack thereof).

o A better understanding of the relationship which exists be-
tween PLL scores for statements and their factuality defined
as document support.

e An analysis of how certain statement characteristics impact
PLL scores, such as adherence to the semantics of an under-
lying relation, or whether entity mentions in the statement
spanned multiple tokens.

e Suggestions for alternatives to PLL with similar computa-
tional demands which can be used when token IDs are un-
available, such as when using soft-prompts.
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We present these contributions with the following structure.
First, we position our research questions within related work in
Section 2. Then we discuss our approach for answering the research
questions in Section 3, including a description of our augmentations
to the DocRED data set. In section 4 we describe and evaluate our
results. We discuss the limitations of these experiments as well as
speculations about the implications of their results in Section 5, and
offer some concluding remarks in Section 6.

2 RELATED WORK

The largest body of related work focuses on fact extraction by
treating MLMs as knowledge bases in their own right [9, 16]. Some
approaches use hand-crafted cloze-style (fill-in-the-blank) prompts
to explore which token an MLM predicts is missing [16], while
others automatically find the best prompt to maximize the score for
some downstream task, such as knowledge base completion [1]. To
simplify our exploration, we followed the former methodology and
used manually-written prompts in our experiments (see Section 3.1).

For both prompting methodologies, the MLM performing the
infilling can either be used out-of-the-box in a zero-shot fashion [8],
or be fine-tuned to enhance results over a particular data set [7].
Given that MLMs capture various types of biases from their training
data [10, 12, 15], we avoid any fine-tuning to remove the possibility
that training on one document will change the predictions regard-
ing statements about another document, such as in the scenario
described previously around contradictory news articles.

For our prompts, we do not ask a MLM to fill in the two blanks.
Instead, we automatically fill in both blanks with known entities
and ask the MLM to score the resulting statement. However, MLMs
are generally not trained to output actual likelihood values for a
given text, unlike traditional unidirectional language models. To
circumvent this limitation, both Shin [18] and Wang and Cho [20]
show how to calculate pseudo-log-likelihood (PLL) scores from the
output logits of a MLM as follows. Let M be a MLM and VM be
its vocabulary of size W. VM maps an input token ¢ to an index
k such that V?’I = k. Let S be a sentence of length N and §,; be
the same sentence but with the token t at index i replaced with a
mask token. The output of M(S) is a matrix MS of size N + 1 x W,
where each row corresponds to the output logits for every t € S
and each column corresponds to some word in the vocabulary.
The pseudo-likelihood of ¢ can then be seen as the likelihood of
replacing the masked token in S\; with ¢ if the replacement were

randomly sampled from VM weighted by M?\i:
Sy
Pt ]8y:) = My (1)
PLL is then calculated by taking the average of the logarithm of the
values for every t € S:

N
PLLu(S) = 1 > log (Pu(t15,) - (@)
i=1

Salazar et al. [17] demonstrate a strong correlation between PLL
and the concept of linguistic acceptability [4]. They argue that this

!There are two important assumptions to note here. The first is that a [CLS] token
is prepended to the sentence, which is not used in the score calculations. Second is
that the MLM is in “masked language modelling” mode and outputting logits for every
token in its vocabulary.
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correlation enables MLMs to be useful across a wide variety of tasks
without fine tuning, and exemplify this by using PLL to improve
existing methods for scoring translations. Bias detection is another
task for which PLL has been used effectively [12, 15]. We take
inspiration from this and designed our experiments to answer RQ1
around the idea that a MLM is inherently biased by its training data
and will likely find statements to be more acceptable if they are
factual with regard to that training data.

More recently, Kauf and Ivanova [11] point out several shortcom-
ings of MLM-based PLL scores, including biases toward multi-token
words? and statement length, then present two alternative formu-
lations for PLL. One yields scores more like those obtained from
traditional (autoregressive) left-to-right language models, while the
other performs whole-word masking when scoring multi-token
words. While we do not use their alternatives in our study, we
explore similar effects (see Section 4.3) with the differing goal of
understanding which aspects influencing PLL can be controlled.

3 APPROACH

In order to answer the research questions, we need a way to em-
pirically study measures such as PLL on a dataset containing al-
ready known facts. In this section we describe the outline of the
work, including the dataset used. All data and code are available at
https://github.com/LiUSemWeb/understanding-pll.

3.1 Data

The data used in the following experiments was derived from the
development portion of the Document-Level Relation Extraction
Data set (DocRED) [21]. DocRED is based on Wikidata [19] and
includes 1000 documents and 96 unique relation types, and is in-
tended for measuring the accuracy of relation-extraction systems in
a challenging setting where some relations can only be concluded
by reasoning over multiple sentences. We do not directly seek to
solve the task presented by DocRED. Instead, we use it as a source
of document-supported facts that can be easily represented as con-
sistent short statements. We use these short statements to analyze
the behavior of MLM scoring measures by contrasting the scores
for statements which are supported by DocRED with the scores for
those which are unsupported but mention the same set of entities.

To generate these statements, we wrote a short fill-in-the-blanks
prompt for each relation. While a prompt for any given relation
can be written in many different ways, each yielding different PLL
scores, we felt that keeping the prompts short and concise was
sufficient to capture the patterns we wanted to examine given
the large number of negative samples we generate. For example,
the relation P17 “country” was converted to “?x is located in the
country of ?y” Then, for every unique pair of entity mentions in
a given document, the two variables were populated to generate
one statement. For document 127, this yields “Florida is in the
country of United States” as a supported statement and “Barry Uni-
versity is in the country of Florida” as an unsupported statement,
among many others. Note that five documents were excluded due
to poorly formatted mentions, two relations were excluded due to

2Note that in their work, out of vocabulary refers to any word which the tokenizer
decomposes into multiple tokens, such as ‘tokenizer’ becoming ‘token’ and ‘##izer’.
We instead refer to these as multi-token words and use out of vocabulary to refer to
input vectors which do not map to any token.
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accidentally identical prompts, and one relation was excluded for
having a prompt which partially overlapped with another when
populated. This yielded a final data set spanning 995 documents, 93
unique relation types, 11,577 supported statements, and 42,315,885
unsupported statements. For the graphs in Section 4, we uniformly
sampled approximately 1% of the unsupported statements, but all
conclusions drawn apply equally to the full data. Additionally, the
number of supported statements varies slightly between language
models, but the variation is too small to affect our conclusions.
We believe this variation is due to slight differences in tokeniz-
ers, resulting in some statements being tokenized identically for
some MLMs. Where appropriate, all figures include the number of
statements per analyzed category.

3.2 Assessing Support with PLL

For these experiments, we chose to gather scores with the base
and large variants of both BERT [5] and RoBERTa [13], the two
most-commonly used MLMs in PLL-based literature. As discussed
in Section 2, we used PLL to score every generated statement in
the data. We then plotted the kernel density estimates of the scores
for statements which have particular attributes. These allow us
to visually and numerically analyze the score distributions and
identify any significant differences between them. For significance,
we used the two-sided Kolmogorov-Smirnov (K-S) test for goodness
of fit, with the null hypothesis that the two distributions in question
are identical. Rejecting the null hypothesis in this case is strong
support that the two distributions are different and that the feature
which defines the split (such as the presence of multi-token entities
described in Section 3.3) has a meaningful effect on the scores.
Where we make such a claim in Sections 4.1, 4.2 and 4.3, the tests
yielded extremely small p-values, well below 0.0005, and so were
not directly reported.

3.3 Multi-token Entities

In our prior experiments with BERT [3], statements which included
long strings of non-English words were scored higher than initially
expected due to how the BERT tokenizer works, with longer, un-
common words being broken down into sub-word tokens. Kauf
and Ivanova [11] reported this effect as well in their experiments.
While instances of these tokens are uncommon in the overall data
set, they tend to be extremely common when appearing together as
a sequence, which makes it easy for the masked language modeling
learning objective to predict missing tokens if only one is masked
at a time. This in turn means that pseudo-likelihood often scores a
token based on the very narrow context of its immediate neighbors,
rather than a statement as a whole. Take the unsupported statement
“Ecole nationale supérieure des Beaux - Arts was born in Paris.”
BERT assigned a pseudo-likelihood of 0.998 or higher to all nine
tokens representing the mention “Ecole nationale supérieure des
Beaux - Arts”, and an overall PLL score of -0.54 to the statement
(a surprisingly high value, as illustrated later in Figure 1). To get a
better idea of the overall effect this has on PLL scores, we extend the
data by labeling every statement with whether it contains at least
one multi-token entity (MTE). In this experiment, MTEs refer to
any entity mention which contains multiple tokens, without regard
for the occurrence of multi-token words.
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3.4 Domain and Range restrictions

Another aspect of linguistic acceptability which we identified as
possibly impacting PLL scores was the general concept of domain
and range of a relation. For instance, while the syntax of the state-
ment from the prior section is correct, its semantics are inconsistent
with those of the underlying relation, since the subject should not
be a school or institution (ORG according to DocRED). DocRED in-
cludes seven entity types, so we were able to mine general domain
and range restrictions for each relation. Therefore, we examine
the relationship between PLL scores and semantic correctness by
additionally labeling every statement as being either “accepted” or
“rejected” by these restrictions.

3.5 Estimating PLL

Some techniques, e.g. soft prompting, feed vectors into a MLM
which do not correspond to any token from the vocabulary. Lv
et al. [14] show that the use of soft prompts can enhance the per-
formance of zero-shot entity recognition and relation extraction.
However, PLL requires all inputs to the MLM to have token IDs, so
it can no longer be calculated in these scenarios. In order to apply
these techniques to a zero-shot fact-extraction scenario, we need a
way to estimate PLL.

It is important to note that PLL can already be estimated for
any input if a given MLM is fine-tuned to output approximate PLL
scores directly [17]. Unfortunately, this relies on well-selected sets
of sentences to calculate the ground truth from, which may not
sample well from the set of “less correct” sentences, meaning that
the method will be further biased by both the fine-tuning corpus
and the negative sampling method. We seek to find a method for
estimating these scores directly that does not have such a limitation,
so any method which required fine-tuning any part of the model,
even an external probing layer, was excluded.

An alternative formulation for pseudo-likelihood is as follows:

S\i
Mi g, (3)

where 1j is a W-length one-hot vector with element k set to 1. In
this sense, pseudo-likelihood can be seen as a similarity measure

between those two vectors, and is maximal only when M?V =1
due to the use of softmax. In a setting which uses soft prompts,
however, k may be undefined for some inputs. Instead, to approx-
imate 1, we substitute it with M? = Pyp(t | S). The use of the
dot product in Equation 3 inspired our choice of cosine similarity
as one of the evaluated measures. The other three measures were
mean squared deviation, Jensen-Shannon divergence, and Hellinger
distance, all of which measure some form of similarity between
(discrete) probability distributions. These fit well if we interpret the
MLM’s output logits as probability distributions over the model’s
vocabulary. By using these measures, we are generally treating M?

as an expected distribution and M?\i as a prediction of it. Where
appropriate, we normalize scores to be between 0 and 1, with 1
representing perfect similarity.

Cosine Similarity (CS) is a measure of the angle between two
vectors, and is often used in natural language processing tasks
involving comparing vector representations of concepts. Given two
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vectors a and b, their cosine similarity is defined as
a-b

llalllbll

Mean squared deviation (MSD) is a measure of the quality of a
predictor for a given distribution, and is often used in loss functions
(as mean squared error). Given two discrete probability vectors a
and b, MSD can be used to define their similarity by assuming that
b acts as a predictor of a:

©

Scos (a,b) :=

w
smad (3D) =1 - ; (ai —by)? . (5)
Jensen-Shannon divergence (JSD) is a symmetric alternative
to Kullback-Leibler (KL) divergence for measuring the similarity
between discrete probability distributions. For the same probabil-
ity vectors a and b as before, JSD calculates a midpoint mixture
distribution c:

c= %(a +b), (6)
then uses that to find the average KL divergence from c:
Sisd (a,b) := % (KL(allc) +KL(bl|c)) . ™)
KL divergence in this setting is calculated as:
w 2
KL(a|b) = ZO a; log (b—) ®)

Hellinger distance (HD) is another measure of the similarity
between probability distributions. For the same two vectors a and
b as before, we calculate their similarity with HD as

©)

For each per-token measure d, we calculate the total score for a
sentence identically to PLL:

529 = L 3 tog s (M5 M3)) 0
i=1

4 EVALUATION AND RESULTS

In this section we present the results of the experiments for answer-
ing our research questions.

4.1 Identifying Supported Statements

Figure 1 compares kernel density estimates for PLL scores based
on whether a statement is supported (considered true) or not. Four
different MLMs were used (BERT base and large, RoOBERTa base
and large), none of which were fine-tuned for any task. All MLMs
showed a clear trend where supported statements have higher PLL
values, which seems to confirm for RQ1 that a high PLL score acts
as an indication for whether a statement is supported.

Figure 2 shows the average pseudo-likelihood value per state-
ment, again separated by support. Again, there is a clear distinction
between supported and unsupported statements. Of note here is the
behavior by RoBERTa base and large, with a much larger number
of tokens in unsupported statements scoring near-zero, which is
not as noticeable for BERT base or large.
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Figure 1: PLL scores for supported (orange) and unsupported (blue) statements. Supported statements score higher fairly
consistently, but the population size for unsupported statements makes these density plots somewhat misleading.
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Figure 2: Average pseudo-likelihood (PLL) scores for supported (orange) and unsupported (blue) statements. Supported state-

ments again score higher fairly consistently.

Despite these graphs, we know that PLL alone is not sufficient
to distinguish supported and unsupported statements [3]. This
is primarily due to the sheer volume of unsupported statements;
for RoBERTa large, there are 46,376 unsupported statements with
scores above -2, but only 6844 supported ones. We see a similar
trend with the average PLL scores, where a cutoff of 0.6 yields
30,618 unsupported statements but 5010 supported ones. For both,
the unsupported statements were counted after the 1% sampling,
so the actual number is roughly 100 times larger. This does not
mean that PLL is useless. A low PLL is still a very strong indicator
of a lack of support, and a more effective method for generating
candidate statements could reduce the number of false statements
such that a reliable cutoff point could be found. Likely, PLL simply
needs to be used in conjunction with other evidence.

4.2 Domain and Range Violations

Figure 3 shows the PLL for statements further divided by whether
they are consistent (accepted) or inconsistent (rejected) with the
entity-type restrictions of their underlying relation. There is a clear
trend toward higher values the more “correct” a statement gets.
Specifically, the scores for rejected statements are generally lower
than those for accepted statements for both supported and un-
supported statements. There is also a clear separation of the two
categories of unsupported statements. We believe that this implies
that entity-type restrictions are one important type of semantic
feature captured by the MLM’s notion of linguistic acceptability,
an aspect that will allow us to better treat more domain-specific
relations as well.

4.3 Multi-token Entities

PLL scores for tokens that compose a multi-token word, as is the
case in many entities, tend to be fairly high due to their treatment
in the masked language model learning objective. Figure 4 confirms
this effect by further partitioning the statements into those which
have multi-token entities (MTEs) and those which do not. To re-
move the effects seen in Section 4.2, only the statements marked
“accepted” were used in this analysis.

We can see from the figures that statements with MTEs tend to
be higher than those without MTEs. Interestingly, supported state-
ments without MTEs and unsupported statements with MTEs seem
to score roughly similarly for both BERT models (K-S test reported
p = 0.012 for base, p = 0.217 for large), which implies strongly that
this is a category for which BERT has trouble distinguishing sup-
ported from unsupported statements. For both ROBERTA models,
these two categories were distinct, (p < 0.0005 for base, p = 0.003
for large), but with the unsupported category scoring higher. Over-
all, these graphs show that statements which do not have MTEs
are likely to be scored lower than those which do, regardless of
support.

4.4 Estimating PLL for Out-of-Vocabulary
Inputs

The final goal of our exploration was to identify a suitable metric
which can act as an estimator of PLL for when it cannot be cal-
culated. As described in Section 3.5, to estimate PLL with a new
metric, we compare the output logits for a token t; at position i in
a given statement with the output logits of that same statement but
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Figure 3: PLL scores for supported and unsupported statements, further divided by whether the entities used in the statements
conform (Accepted/Rejected) to the domain and range of the relation they represent.
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Figure 4: PLL scores for true and false statements, further divided by whether a statement contains a multi-token entity (MTE).

Note that only “Accepted” statements are used in this analysis.

with ¢; replaced with the mask token ([MASK]). If we consider the Metric  All Statements Supported Unsupported
PLL scores to be the ground truth and the metric-based scores to. be cs 0.796 0.921 0.789
an estimate, then we can use the Spearman rank-order correlation
. . . . . . JSD 0.742 0.914 0.731
coefficient to determine the quality of the estimation. In brief, a
high Spearman coefficient indicates a strong correlation and implies MSD 0.675 0.793 0.664
1P & P HD 0.756 0.925 0.746

that the metric will rank statements similarly to PLL.

Table 1 shows the Spearman rank-order correlation coefficients
for the various metrics with regards to the PLLs given by RoBERTa
large. Given two statements S and T, we interpret a high correlation
between PLL and a metric M as saying that if PLL(S) < PLL(T),
then it is likely that M(S) < M(T), thus preserving ranking while
also being linearly correlated. We consider a score of 0.8 to be
a high correlation. The measure with the highest correlation for
supported statements was HD, but only by a small amount. CS
correlated better with unsupported statements, which is likely why
its correlation to all statements is high as well, and is on par with
HD for supported statements.

It is important to note that deviations from PLL might actually be
favorable. For instance, if a measure ends up being more predictive
of support than PLL, the deviation of the two may be large. However,
here we are only considering whether a metric is a good estimate
of PLL, flaws and all, so we base our judgments on the assumption
that a higher correlation is preferred.

Table 2 further examines the four measures by considering their
Spearman coefficients for subsets of the data as broken down in
the earlier experiments. Cosine similarity again has the highest
correlation, except for the two categories where statements were
both supported and accepted. This seems to follow a general trend,

Table 1: Spearman rank-order correlation coefficients be-
tween aggregate scores under the metric schemes and PLL
scores, all from logits output via RoOBERTa large. We consider
scores above 0.8 to indicate a strong correlation. Three of the
four metrics seem to have a moderately high correlation to
PLL in all categories, with cosine similarity (CS) having the
highest overall correlation except for true statements. All
p-values are below 0.0005.

where the correlations are highest for supported statements and
lowest for unsupported statements across all measures.

5 DISCUSSION AND FUTURE WORK

In this section we discuss the limitations of our current work, and
provide an outlook towards the larger aim of our work.

5.1 Limitations

In this work, we only considered the case where the context (the
world in which the statements are factual) was the background
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Metric  Supp + Acc  Supp + Rej Unsupp + Acc  Unsupp + Rej  Supp W/MTEs  Supp w/o MTEs  Unsupp W/MTEs  Unsupp w/o MTEs
CS 0.921 0.924 0.847 0.779 0.921 0.865 0.850 0.620
JSD 0.914 0.892 0.815 0.717 0.914 0.862 0.819 0.615
MSD 0.793 0.802 0.713 0.651 0.789 0.834 0.709 0.551
HD 0.925 0.911 0.827 0.733 0.925 0.864 0.830 0.604

Table 2: Spearman rank-order correlations between aggregate scores for each measure and PLL scores, all from logits output via
RoBERTa large The categories are the same as in Figures 3 and 4. We consider scores above 0.8 to indicate a strong correlation.
Cosine similarity (CS) again has the highest overall metric score in most categories, but Hellinger Distance (HD) shows slightly
higher correlations for the “most correct” statements (supported statements which conform to relational restrictions). All

p-values are below 0.0005.

knowledge of the MLMs being tested, and made the assumption
that the information in the testing documents is also captured by
those models, due to being based on Wikidata. Further, we only
examined primarily commonsense relations. Our results may not
generalize well to statements that capture more complicated or
domain-specific relations not present in the MLM’s training data.
Further, the data in this work was primarily monolingual, with
only a portion of the entities originating from languages other than
English. While the transformer architecture of MLMs should not
inherently be biased toward languages with specific characteristics
(e.g. text direction or syntactic structure), availability of training
data will be a limiting factor. As such, caution should be exercised
when extrapolating the results of this work to MLMs trained on
other languages, especially those which are resource-poor.

5.2 Outlook and Future Work

We discussed in Section 1 the need to avoid the bias inherent in
MLMs for effective fact extraction, while all experiments in this
work took advantage of that bias. However, still, we feel that our
work so far is a first step toward this goal. The next step is to develop
a method for calculating scores for statements where the MLM does
not have knowledge of the entities. Based on the experiments in
this paper, we believe that the following are valid speculations: The
experiments with relation restrictions confirm that the semantics
of the entities in questions influences the scores. The experiments
regarding MTEs hint that such a method will need to represent
entities with multiple tokens, to avoid the tendency of MLMs to
assign high pseudo-likelihoods to pronouns when only one masked
token is present. We further speculate that in order to remove
background knowledge about an entity, its representation will likely
need to be replaced with OOV tokens somehow contextualized
exclusively on the document from which they come, such as during
the generation of a soft prompt. Such OOV representations then
necessitate the use of one of the PLL approximations shown earlier.
We intend to explore all of these routes in future work.

More general future work should include the application of our
approach to data sets beyond DocRED, such as for domain-specific
fact extraction, in particular with MLMs trained on domain-specific
documents. In the end, our goal is to build a KG extraction and
querying framework, using a MLM as the front end to a virtual KG
that is extracted on-the fly based on the user’s queries.

6 CONCLUSIONS

In this paper we have studied how well the MLM scoring method
PLL correlates with the support of statements in input texts, in
particular for certain common MLMs. We found for RQ1 that this
correlation is high, although the large number of possible unsup-
ported statements that can be generated means that it can not act
as a discriminator on its own. We further found for RQ2 that there
was a noticeable lowering of PLL scores for statements with en-
tities which were of an incorrect type given the semantics of the
relation they represented. Since the relations in DocRED are mostly
commonsense, we assume that a violation of the semantics of these
relations is likely to be perceived as a lack of fluency, drawing a
parallel back to linguistic acceptability. For RQ3 we showed that
statements without MTEs generally scored lower, regardless of
whether they were supported. We believe that this is related to
the heavy use of pronouns in English, where masked single-token
nouns are often scored low because MLMs assign high pseudo-
probabilities to pronouns (e.g. it or she).

Finally, for RQ4 we studied how well common similarity metrics
can estimate PLL for cases where it cannot be calculated, which
will be a situation important to our envisioned, more generic KG
extraction setting. We showed that cosine similarity has the highest
overall correlation to PLL among the measures we tested, and by
the use of K-S test additionally showed that it generally preserved
rankings, making it a suitable substitute. Hellinger distance was
a close second, but showed lower correlations for unsupported
statements. While we focused exclusively on estimating PLL, future
work should assess whether lower correlations have a positive
impact on the actual predictive performance.

Overall we find that PLL sufficiently well represents the support
of a fact in a document, and there are ways to cope with the identi-
fied aspects of domain-specific sentences. We also identify a clear
next step as the need to account for MLM biases in scoring, such
that we can properly handle fact extraction from documents with-
out concern for the information about an entity in one document
leaking into the extractions from another.
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