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ABSTRACT
Daily dietary choices play an indispensable role inmitigating lifestyle-
related diseases. Functional components found within foods may
offer potential benefits in this regard. We constructed a knowledge
graph that links these functional components of food to recipes
and further developed a recommendation system to suggest dishes
that may contribute to the alleviation of lifestyle-related diseases.
Since dietary requirements can vary significantly depending on the
specific disease and individual conditions, combining these require-
ments forms a vast probabilistic distribution. Our proposed system
makes recommendations based on the dietary requirements spe-
cific to the disease by employing probabilistic logical programming,
which utilizes a knowledge graph about food and information about
the user’s condition. Meanwhile, nodes in the knowledge graph,
such as food functionalities or recipes, are characterized by their
relationships with other surrounding nodes, such as food ingre-
dients. To handle and solve these characteristics, we employ the
deep learning probabilistic logical program. And the result of the
experimentation, we have constructed a system that recommends
recipes effective for lifestyle-related diseases based on functional
ingredients.
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1 INTRODUCTION
Today, lifestyle-related diseases have become a significant public
health issue globally. According to statistics published by the World
Health Organization (WHO) in 2022[15], there is an increasing
trend in deaths caused by non-communicable diseases. Notably,
deaths due to diabetes have surged by 70% between 2000 and 2019,
emphasizing the urgent need for measures against lifestyle-related
diseases worldwide. A primary cause of these diseases is found to
be closely linked to daily dietary habits. In 2020, the WHO released
five guidelines for preventing lifestyle-related diseases, emphasiz-
ing the importance of revisiting dietary ingredient balance and
avoiding excessive intake of salt, fat, and carbohydrates. Given this
backdrop, there has been a recent surge in the provision of daily
food-logging tools and health-improving recipe recommendation
systems[2, 11, 14]. Most of these systems determine recipe recom-
mendations based on the essential nutritional content of meals and
user metrics like BMI. On the other hand, specific foods possess
functional properties that can promote health, including mitigat-
ing lifestyle-related diseases. However, databases organizing this
functional information or systems utilizing it have yet to be pro-
posed, and it remains underutilized in recipe recommendations. In
this study, we collate and aggregate various functional component
databases, linking items in food and recipe databases to construct
a knowledge graph, thereby systematizing information on food
functionality. In addition to storing this knowledge graph in our
NARO-linked databases [10], we also propose a method of using
this knowledge graph to recommend recipes that are effective in im-
proving lifestyle-related diseases. Recognizing that the necessary
functionalities, nutrients, physical and mental conditions differ
depending on the type of lifestyle disease and individual users,
our approach implements a probabilistic logical inference. This
method is considered apt as it probabilistically represents whether
to apply specific conditions based on user and meal characteristics.
This research establishes recommendation rules targeting obesity,
a lifestyle-related disease, and implements these recommendations
using the constructed knowledge graph and inference system.

And as a result of the experimentation, we have constructed
a system that recommends recipes effective for lifestyle-related
diseases based on functional ingredients.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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2 RELATEDWORK
Numerous systems for recipe recommendation that utilize databases,
knowledge graphs, and ontologies related to food have been pro-
posed. Many of these aim to recommend recipes tailored to users’
profiles. While not all of these systems explicitly aim to improve
lifestyle-related diseases, most take into consideration the balance
of food and indirectly aim to recommend recipes that could improve
lifestyle-related diseases.

To the best of our knowledge, there are no recommendation
systems that focus on the functionality of foods. However, there are
recipe recommendation systems that reference knowledge graphs,
such as those that analyze texts about recipes and users’ health
conditions[11, 14], and those that optimize various necessary pa-
rameters for recommendation based on a knowledge base through
machine learning[1, 2, 21].

Furthermore, when considering health in recipe recommenda-
tions, multiple systems [3, 7, 17, 20] have been proposed that pri-
marily standardize rules based on intake limits of essential nutrients
set by each country’s responsible ministries. These systems also
consider users’ preferences when making recommendations.

In particular, Chen et al. [3] proposes a multi-task learning
method that combines a knowledge base, users’ eating history,
and intake limits of essential nutrients. This method simultane-
ously learns the recipes that a user can intake and the preferences
derived from their eating history.

Other relevant to this study are systems like the one in theHEALs
project1 that considers the user’s health condition and allergies[11],
and systems that identify user profiling through food preferences
to recommend recipes[1].

In this study, we aim to encourage a revision of dietary habits as
a preventive measure when individuals exhibit physical measure-
ments that suggest a potential risk for lifestyle-related diseases. To
realize this, it is essential to be able to set conditions to be considered
in dietary habits for each corresponding lifestyle-related disease.
Moreover, the importance of these conditions varies depending on
individual characteristics such as constitution; thus, they should
be applied probabilistically. Therefore, to adopt recommendation
rules suitable for each lifestyle-related disease, we employed an
approach based on probabilistic logical inference grounded in rule-
based systems.

The knowledge bases used in these studies often include large-
scale food ontologies like FoodOn[5], FoodKG[11], large-scale recipe
data like Recipe1M+[13], and extensive databases of food com-
pounds like FlavorDB[8], FooDB2. None of these databases focus on
food functionality. We believe that combining these with databases
on functional food components, such as the proprietary database
from the National Agriculture and Food Research Organization3,
or the Consumer Affairs Agency’s functional food notification in-
formation search service4, would enable the recommendation of
more effective recipes for lifestyle-related diseases.

1https://idea.rpi.edu/research/projects/heals
2www.foodb.ca
3https://nousanbutsu-kinou.rad.naro.go.jp/
4https://www.fld.caa.go.jp/caaks/cssc01/

3 SYSTEM OVERVIEW
The overview of our system construction approach is illustrated in
Figure 1. Initially, we constructed a knowledge graph by integrating
a dataset related to functional components that we gathered online
with existing datasets on recipes and foods. For the existing recipe
dataset, we utilize a structured dataset from Recipe1M+, a large-
scale recipe dataset that contains recipes, ingredients, respective
nutritional components, their quantities, and cooking steps. The
rationale for selecting this dataset is the same as other existing
recommendation systems: nutritional balance is the primary focus
for improving lifestyle-related diseases. Therefore, it is essential to
choose a dataset where the amount of each nutrient is explicitly
specified. For the data on functional components, we used data
collected from the food functionality database published by the Na-
tional Agriculture and Food Research Organization5 and the search
service for functional notification products provided by the Con-
sumer Affairs Agency6. While many of these functional component
data are linked to compounds, the search service of functional noti-
fication products is not always linked to specific foods. As a result,
we first constructed a temporary knowledge graph by associating
these data with foods and compounds in FlavorDB, a comprehensive
database on food compounds. Subsequently, by linking this knowl-
edge graph with the structured data from Recipe1M+, we built a
knowledge graph embedded with information on food functionality
and nutritional components.

Figure 1: System Overview.

To utilize this knowledge graph, we constructed separate user
data for 1,000 individuals to perform recipe recommendations. This
dataset includes information on the user’s height, weight, body
fat percentage, blood and urine test results, and approximate data
on the nutritional components they consume daily. This dataset
allows us to gauge whether a user tends to have lifestyle-related
diseases and if there is an excess or deficiency of specific nutrients,

5https://nousanbutsu-kinou.rad.naro.go.jp/
6https://www.fld.caa.go.jp/caaks/cssc01/

https://idea.rpi.edu/research/projects/heals
www.foodb.ca
https://nousanbutsu-kinou.rad.naro.go.jp/
https://www.fld.caa.go.jp/caaks/cssc01/
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Figure 2: Proposed ontology for recipes, foods and its func-
tionalities.

Table 1: Knowledge graph instances.

Instance type amount

Recipe 51,235
Food (Ingredient) 357

Nutrient 6
Compound 60,493
Function 61

Edge (Recipe to Food) 311,435
Edge (Recipe to Nutrient) 307,410
Edge (Food to Nutrient) 2,142

Edge (Food to Compound) 1,868,610
Edge (Food to Function) 73

Edge (Compound to Function) 61

encompassing most of the information necessary for recipe rec-
ommendations. By referencing this data alongside the data on the
knowledge graph using a probabilistic logical reasoning program,
we can achieve recommendations for recipes effective in improving
lifestyle-related diseases and express the importance of conditions
to consider during recipe selection regarding probability values. It
is anticipated that this approach can be utilized in applications like
alternative recipe recommendations or the development of other
recipes.

4 KNOWLEDGE GRAPH CONSTRUCTION
The knowledge graph proposed in this study is defined by an ontol-
ogy consisting of classes of recipes, ingredients, nutritional compo-
nents, compounds contained in ingredients, functional, and edges
indicating their respective relationships. This ontology is illustrated
in Figure 2. Additionally, the number of instances for each class
and edge is presented in Table 1.

Each edge is directed, and while edges representing inverse re-
lationships are also included, they are omitted in Table 1 and in
the ontology representation in Figure 2 for simplicity. Furthermore,

matching from Compound to Function was challenging with Fla-
vorDB, and only one-to-one correspondences could be obtained. As
a result, the number of nodes in the function class and the number
of edges from the compound class are the same.

4.1 Utilized Datasets
4.1.1 Recipe1M+. Recipe1M+ is a large-scale dataset of recipes and
images constructed for the task of retrieving recipes from images,
and as the name suggests, it contains over 1 million recipes. These
recipes were collected from online recipe-sharing sites, and most
of the recipe documents are published in a format that simplifies
the parsing of HTML. Among them, some data is released in a
structured format based on the nutritional components provided
by the USDA, including the amount of nutritional components
contained and the amount used during cooking. Given that this is
likely the largest dataset with structured data on the nutritional
content and quantities used in recipes, we have adopted a structure
centered on this data in our knowledge graph.

4.1.2 NARO Food Function Database. The National Agriculture
and Food Research Organization provides a search service for func-
tional food components based on their unique research7, which
contains data on 200 types of foods and 30 functional ingredients.
While results on the content of various functional ingredients are
also provided, the data is in text format and does not have a consis-
tent description style. Therefore, in this study, only the relationships
between the foods, their functionalities, and the compounds with
these functionalities are used.

4.1.3 Functional Labeling Food Notification Information Search Ser-
vice. This is a web service8 provided by Japan’s Consumer Affairs
Agency, where one can search for a list of products for which man-
ufacturers and others have reported their functional labeling. The
notification form allows for various details to be entered; hence,
the search results output various information, including the func-
tionality of the product. The functionality is described in natural
language, and the content is left to the discretion of the notifier, of-
ten resulting in content resembling product advertising. Unlike the
NARO database, as of 2023, more than 7,000 entries are registered.
However, it’s challenging to obtain data in a format that correlates
specific ingredients with their functionalities. In this study, we only
use data where both the functional ingredient, which is a compound,
and its functionality can be identified.

4.1.4 FlavorDB. FlavorDB is a vast database concerning food and
the compounds containedwithin them.While there are other databases
detailing the relationships between food and compounds, FlavorDB
stands out for its extensive scale and its user-friendly provision of
these relationships in a JSON format. Because of these advantages,
we adopted it in this study to combine ingredients, functionality,
and recipes. FlavorDB has a unique background, having been con-
structed for research and aggregation related to compound flavors.
Consequently, many of the compounds recorded in the database
are accompanied by word data related to flavors.

7https://nousanbutsu-kinou.rad.naro.go.jp/
8https://www.fld.caa.go.jp/caaks/cssc01/

https://nousanbutsu-kinou.rad.naro.go.jp/
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4.2 KG Construction Method
Ingredients and nutritional components data are derived from the
Recipe1M+ structured dataset, while information concerning com-
pounds contained in ingredients and functionality is sourced from
FlavorDB and various functional component databases aggregated
from the web. While it’s assumed that nutritional components like
carbohydrates, fats, proteins, and salt can be constituted by indi-
vidual compounds found in ingredients, the specific amounts of
these compounds are not included in the data retrieved from Fla-
vorDB. Therefore, representing nutritional components with the
compound class was deemed challenging, leading us to treat them
as separate classes.

Examples for linking data sourced from various datasets is shown
in Table 2. In the table, Data source 1 and 2 respectively indicate
the datasets from which the instances for matching are obtained,
while Instance 1 and 2 provide examples of each instance.

Ingredients to Compounds: Matching is done based on the
food name. While Recipe1M+ ingredients may include infor-
mation about their processing state, investigating differences
in individual compound content was deemed challenging.
Therefore, we matched with the food labels on FlavorDB.

Compounds to Functionality: Matching is conducted using
PubChemID. While compound data in FlavorDB is tagged
with PubChem IDs, many of the data on functional compo-
nents either have IDs from the Japanese Chemical Substances
Dictionary or are merely denoted by their compound names.
We manually converted these to PubChemIDs. Due to this,
even if the functional ingredients are identical to compounds
on FlavorDB, there is a possibility they might differ, such as
being different isotopes; thus, a perfect match is not guar-
anteed. In cases that require adjustments, it’s necessary to
individually review foundational documents, such as system-
atic reviews.

Ingredients to Functionality: For certain functionalities or
compounds that did not match, wematched based on ingredi-
ents containing that function. Ingredient data on FlavorDB is
linked to the corresponding species’ Wikipedia page. Using
this, we retrieved the Japanese label for the relevant con-
cept on Wikidata and matched it with the food labels in the
functionality dataset. This approach might introduce some
mismatches through incorrect pages. After investigating the
accuracy of this matching, it was found to be 92.1%.

Functionality to Functionality: All functionalities are rep-
resented in Japanese text. We simplified and consolidated
their representation based on the National Agriculture and
Food Research Organization’s functional component data-
base. Functionalities retrieved from the functional product
search service were rewritten into a simpler expression. If
during this process, the content words perfectly matched
those in the functional component database, or if there were
similar expressions for the same compound’s functionality,
they were deemed to be the same functionality.

5 PROBABILISTIC LOGIC PROGRAMMING
Inference was implemented using the ’Learning from interpreta-
tions’ algorithm in ProbLog, a probabilistic logic programming

language. ProbLog is an extended version of a logic programming
language that allows assigning probabilities to each logical expres-
sion in the source code. Not only can it be described in notation
compliant with the Prolog logic programming language, but it also
possesses extended functionalities that cater to various inference
algorithms. Among the major lifestyle diseases are cancer, heart
disease, cerebrovascular disease, diabetes, hypertension, obesity,
and fatty liver. For the recommended recipes, we assume the user’s
dinner and set an upper limit on the nutritional components of
the meal to be recommended based on the nutrients the user has
consumed throughout the day. In particular, obesity is a significant
factor inducing other lifestyle diseases and serves as a barometer
indicating issues with one’s lifestyle balance. Therefore, using the
previously mentioned knowledge graph and the user data discussed
later, we devised a method in ProbLog to recommend recipes ef-
fective for improving obesity. Criteria for determining obesity are
presented in 3. Additionally, physical examination items that may
indicate the possibility of obesity, might induce obesity, or may
worsen due to obesity are listed in 4.

Furthermore, excessive intake of nutrients, primarily sugars and
fats, is cited as the main factor for obesity. Considering these points,
the following indicators for recipe recommendation were set, and
probabilities for each were determined from the training data:

is_obesity An indicator to determine if a user is obese. It is
considered true if the conditions in table 3 are met.

intake_limit An indicator of the upper limit of various nu-
trients that the user can consume. Assuming dinner, it is
determined by the difference between the amount of nutri-
ents the user has consumed until dinner and the daily intake
limit.

blood_pressure An indicator to determine if the user has high
blood pressure.

urine_protein An indicator of whether protein is present in
the user’s urine. Protein in urine is more likely to appear
due to decreased kidney function, and in cases of obesity,
kidney function is more likely to decrease. Hence, it serves
as a barometer for the risk of complications due to obesity.

blood_ldl Whether LDL cholesterol exceeds the threshold.
effective_function Whether the recommended recipe con-

tains functional components effective against obesity.

The condition related to stress was removed to reduce computa-
tional complexity. A ProbLog snippet that combines these indicators
to show recipe recommendations is presented in Figure 3.

As illustrated in the figure, the decision to recommend a recipe
is based on the following three criteria: Nutrient Intake Limit Cri-
terion: From the user’s dietary history for the day, this criterion
checks if the nutritional components of the recipe exceed the per-
missible intake limits. This criterion is represented in the figure by
the ’nutrition_limit’ equation. Obesity-Related Criterion: This eval-
uates whether the user meets any of the criteria indicating obesity
or any related measures. This criterion is represented in the figure
by the ’obesity_related_problem’ equation. Functional Criterion:
This checks if the ingredients or compounds in the recipe have
functional properties effective against obesity. Represented by the
’has_function’ equation in the figure, it retrieves the functional in-
gredients included in the recipe by exploring the knowledge graph.
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Table 2: Data Linking Examples.

Instance Type Data Sources Instances Linking Method

Ingredient Recipe1M+ "yogurt, greek, plain, nonfat" Word matching.
FlavorDB "Yogurt"

Ingredient FlavorDB "Cabbage" Match through Wikidata item.
Functionality Dataset "Cabbage (in japanese)"

Compound FlavorDB "Epigallocatechin Gallate" Pubchem ID matching.
Functionality Dataset "Epigallocatechin Gallate (in japanese)"

Functionality NARO Functionality DB "Decrease high blood pressure." Manually matching.
Customer Affairs Agency’s DB "... peptide decrease high blood pressure ..."

Table 3: Criteria for determining obesity.

Indicator Criteria

BMI 25
Body Fat Rate Male:>20%, Female:>30%
Waist Size Male:>85cm, Female:>90cm

Table 4: Criteria for obesity related diseases.

Indicator Criteria Details

Urine Protein Positive Possible nephropathy.
High Blood Pressure > 140/90 mmHg Causes some deseases.
High LDL Cholesterol > 140mg/dl Causes of arteriosclerosis.

High Stress Stress Check Causes of overeating.

This criterion is realized by combining the proposed knowledge
graph with probabilistic logic inference. By attributing probabilities
to each nutritional component in the ’nutrition_limit’ equation,
it is anticipated that we can identify which nutrients are critical
(i.e., typically overlooked by the most of users). Moreover, by as-
signing probability values to each obesity-related measure in the
’obesity_related_problem’ equation, we expect to infer which health
issues are more prevalent among the entire user base from these
probabilities.

The daily intake limit is determined by the public health authori-
ties of each country. In this study, we adopted the maximum intake
level, classified as Body Level III, from the dietary reference intakes
data published by Japan’s Ministry of Health, Labour and Welfare
as the intake limit[6]. As this intake limit varies depending on the
user’s age and gender, each condition was individually incorporated
into the program.

5.1 User Data
In order to carry out the recommendations related to obesity, we
created the necessary user data. The user data was constructed
to correspond to the obesity-related indicators mentioned above,
consisting of general physical measurement data such as height,
weight, waist circumference, blood pressure, body fat percentage,
and gender. In addition, we also included data from blood tests,

urine tests, the presence of physical and mental stress, and the
average values of nutrients consumed per day over several days.
Regarding the consumed nutrients, since the recommendation is
intended for dinner recipes, we used two-thirds of the values for
the calculations. We created 1,000 individual user data.

6 RECIPE RECOMMENDATION EXPERIMENT
Using the constructed knowledge graph and user data, we con-
ducted experiments to determine the probabilities of the recom-
mendation formula shown in Figure 3 and various obesity-related
indicators. To prepare the training data, we assigned real-number
recommendation scores to recipes from Recipe1M+. These scores
are automatically assigned based on the permissible nutritional
intake and the functionality of the food. If the score is positive, it
is recommended, and if it is negative, it is not recommended. The
annotated data was created based on this criterion.

These scores are calculated so that recipes containing functional
ingredients have a higher score.While it is believed that this method
could significantly influence the experiment results, this approach
was taken as a preliminary measure, anticipating the future creation
of training data on whether each recipe should be recommended to
users with the cooperation of registered dietitians.

For the training data, five recipes recommended for each user and
five recipes not recommended were randomly extracted from the
annotated data, constructing a total of 10,000 sets of recommended
and non-recommended data pairs. In selecting these recipes, the
selection was narrowed down to 200 recipes in order to facilitate
comparisons among users.

The probabilistic values learned for each rule using this training
data are presented in Table 5. Training was conducted individually
for each user, and the table shows the average (𝑃 (𝐴𝑣𝑔.)) and stan-
dard deviation (𝑃 (𝑆𝑡𝑑.)) of the probabilistic values for each derived
fact across users.

Despite the variation in dietary history among users, it is evident
that the intake of energy, salt, and protein is on the higher side,
suggesting that most users tend to overconsume these nutrients.
On the other hand, fats and sugars, which are significantly corre-
lated with obesity, show a relatively low probability, indicating that
they are not overconsumed. The results seem to reflect the typical
nutritional distribution trends of Japanese cuisine.

From the average and standard deviation of the ’obesity related
problem’, it is evident that the variability regarding obesity-related
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% Recommendation Rule For Obesity Person
t(_)::recommend_food(User,Recipe):-

obesity_related_problem(User),
\+ over_nutrition_limit(User,Recipe),
has_function(Recipe).
recipe(Recipe),user(User).

% For Obesity Person (No Function But Recommend)
t(_)::recommend_food(User,Recipe):-

obesity_related_problem(User),
\+ over_nutrition_limit(User,Recipe),
\+ has_function(Recipe).
recipe(Recipe),user(User).

% For Healthy Person
t(_)::recommend_food(User, Recipe):-

\+ obesity_related_problem(User),
\+ nutrition_limit(User,Recipe),
recipe(Recipe),user(User).

t(_)::over_nutrition_limit(User,Recipe):-
is_over_limit_energy(User,Recipe);
is_over_limit_salt(User,Recipe);
is_over_limit_fat(User,Recipe);
is_over_limit_protein(User,Recipe);
is_over_limit_sugar(User,Recipe).

t(_)::obesity_related_problem(User):-
is_obesity_bmi(User); is_obesity_waist(User);
is_obesity_bfat(User); is_urine_pro(User);
is_blood_high_cholesterol(User);
is_high_blood_pressure(User).

has_function(Recipe):-
has_edge_recipe_ingr(Recipe,Ingredient),(
has_edge_ingr_func(Ingredient, Function);(
has_edge_ingr_comp(Ingredient, Compound),
has_edge_comp_func(Compound, Function),
compound(Compound))),

ingredient(Ingredient),function(Function).

Figure 3: The ProbLog Snipet of Recipe Recommendation
Indicators.

issues is larger compared to other metrics. Moreover, it indicates
that nutritional factors are given greater emphasis than whether
or not an individual experiences obesity-related concerns when
recommending recipes. On the other hand, the proportion of par-
ticipants exceeding the standard values for obesity is 54%, which is
roughly half, and there isn’t a significant deviation from the average,
suggesting the scoring seems appropriate. Additionally, concerning
the obesity standard values, while 54% of the participants exceed
the body fat percentage standard, the proportion exceeding the
BMI and waist standards are lower (18% and 21%, respectively).
This indicates that there are many participants who might have
sarcopenic obesity, a condition that has been on the rise in recent
years, as referenced in [18].

For the recommendation probabilities, the scores for recipes con-
taining functional ingredients are higher than those without such
fact, indicating that recipes with functional components are more
likely to be recommended. On the other hand, recommendation
formulas targeting non-obese users also scored high, consistent
with the observed trend that whether or not a user is obese isn’t
given significant importance.

Using the results of this learning, we experimented to determine
whether it is possible to recommend recipes tailored to individu-
als. We picked up 25 recipes not used in the training data as test
data and selected three obese and three non-obese users to make
recommendations. As an evaluation metric, we calculated the rank
correlation between the probability value when recommended and
the original score. The results are shown in Table 6. In the table, 𝜌
is a rank correlation score. 𝑃 (𝑁𝑢𝑡) represents the probability value
for the fact when excessive intake of any nutrient was observed,
𝑃 (𝑂𝑏𝑒) represents the probability value assigned for the fact when
there is suspicion of obesity, and 𝐹𝑢𝑛𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 indicates whether
the recommendation probability for recipes containing functional
components is higher than for those not containing them. All these
are related indicators as to which health improvement metric was
effective in recipe recommendation, which is the objective of this
study.

From the results, in terms of rank correlation, although the orig-
inal correct annotation scores and the recommendation rules have
a similar philosophy (e.g., scores increase when nutrients are not
exceeded or when functional ingredients are included), there was
almost no observable correlation. One possible reason for this dis-
crepancy could be that while the recommendation rules determine
nutrient excess based solely on threshold values, the score calcula-
tion side affects the score based on the degree of exceedance. This
could mean that the recommendation system might not have been
able to adapt to the changes in ranking due to this influence.

For nutrient excess, the scores generally trended lower, similar to
the probability values during training. Particularly, users with low
scores (o1, o3, h2) had already exceeded the salt intake limit before
the recipe recommendation, suggesting that no matter which recipe
was recommended, they would deviate from this condition. As a
result, this rule seems to have been less considered.

In practical applications, even if a user has already consumed
too much of a nutrient, there is still a need to suggest recipes, so
this learning outcome is deemed appropriate. However, as men-
tioned earlier, there is a lack of metrics to evaluate the degree of
nutrient deviation. Therefore, there’s a possibility that recipes that
are not very appropriate in terms of nutrient balance might be
recommended, suggesting a need to refine the rules.

The conditions regarding obesity showed a difference in scores
between users who are obese and those who aren’t, indicating that
it is given more importance for users who are obese.

For the rule of functional ingredients, the trend was consistent
with the results during training, showing that recipes containing
these ingredients were given more importance than those without
them.
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Table 5: Statics of Learned Probabilities of Formular

formular 𝑃 (𝐴𝑣𝑔.) 𝑃 (𝑆𝑡𝑑.)
recommend_food( Obesity & Function) 0.711 0.187

recommend_food(Obesity) 0.504 0.235
recommend_food(Healty) 0.717 0.177

nutrition_limit 0.267 0.181
is_over_limit_energy 0.811 0.117
is_over_limit_sugar 0.429 0.160
is_over_limit_salt 0.851 0.155

is_over_limit_protein 0.898 0.122
is_over_limit_fat 0.769 0.128

obesity_related_problem 0.502 0.363

Table 6: Recommendation Result

userID Obesity 𝜌 𝑃 (𝑁𝑢𝑡) 𝑃 (𝑂𝑏𝑒) 𝐹𝑢𝑛𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦

o1 True 0.025 0.149 0.234 False
o2 True -0.039 0.497 1.0 True
o3 True -0.007 0.347 0.714 True
h1 False -0.004 0.556 9.13𝑒−6 True
h2 False -0.016 0.058 0.009 False
h3 False 0.056 0.300 0.297 True

7 CONCLUSION AND FUTUREWORK
We proposed a system for recommending recipes based on indica-
tors leading to the improvement of lifestyle-related diseases, such as
recipes containing functional ingredients. This system combines a
knowledge graph that includes data on recipes and functional ingre-
dients with probabilistic logical reasoning. The knowledge graph
is composed of the large-scale recipe dataset Recipe1M+, the func-
tional ingredient database provided by the National Agriculture and
Food Research Organization, and the functional ingredient labeling
food notification database provided by Japan’s Consumer Affairs
Agency. Such a knowledge graph, which comprehensively records
functional ingredients, has not existed before and is considered to
be a highly valuable database. On the other hand, it became clear
that the data related to functional ingredients could be much better
compared to the recipe data obtained from Recipe1M+. Moreover,
there needs to bemore data related to ingredients, suggesting a need
to proceed with data acquisition from external ontologies such as
FoodOn. As for functional ingredients, some compound information
included in Chebi[9] has features corresponding to food functions,
so in the future, we aim to enhance functional information from
Chebi. Additionally, as data concerning functionalities and com-
pounds becomes more available, we are considering implementing
inferences using probabilistic logical inference programs with deep
learning[12, 19, 22], and characterizing each node on the knowl-
edge graph using GraphEmbedding[4], similar to FlavorGraph[16].
Many of FlavorDB’s compounds are annotated with flavor infor-
mation related to the tastiness of food. By adding this information,
along with preferences from subject data, we are also exploring
recommendations based on taste and food preferences.

For the recipe recommendation system, we defined metrics re-
lated to obesity improvement and determined their application
probability using the knowledge recorded in this knowledge graph.
Additionally, we conducted experiments to determine the probabil-
ity of recommending recipes based on these probability values. As
a result, we could adjust the degree of application of criteria, such
as the presence or absence of functional ingredients and the excess
or deficiency of nutrients, depending on the user’s condition, and
train the system to make appropriate recommendations. However,
we found that if the user has already exceeded the intake limit for
certain nutrients, there’s a possibility that a suitable recipe might
not be recommended. In the future, we are considering expanding
the rules to cover other lifestyle diseases besides obesity and are
looking into improvements that allow for more flexible condition
settings.
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