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ABSTRACT
Extended Characteristic Set(ECS) is an efficient RDF(Resource De-

scription Framework) index structure. By storing data as graphs

in the index, ECS can quickly recognize candidate graph patterns.

In order to meet the management needs of temporal RDF data on

ECS, the typical strategy is to employ the RDF reification method.

However, the storage and query performance of the method will de-

cline sharply as the data volume increases. According to the above

limitation, we introduce H-ECS, a new composite index that takes

the properties of temporal RDF data into account. By splitting the

property bitmaps of ECS and indexing the temporal interval of split

parts with HINT
𝑚
(A Hierarchical Index for Intervals), H-ECS can

enhance storage and retrieval performance for temporal RDF data.

A key-value index is also used in H-ECS to speed up the query.

Based on H-ECS, we propose a specific pattern matching algorithm

for typical queries of temporal RDF and implement a storage and

query engine for temporal RDF data named TECStore. The exper-

imental results show that the storage and query performance of

TECStore outperforms AxonDB and PeriodDB for both synthetic

and real-world temporal RDF data.

CCS CONCEPTS
• Information systems→ Information retrieval; Data manage-
ment systems; • Computing methodologies→ Artificial intelli-

gence.

KEYWORDS
Temporal RDF, Extended Characteristic Set, Hierarchical Interval

Index, Temporal Query

1 INTRODUCTION
In traditional RDF models, the temporal dimension is usually ig-

nored or represented as a property, which has limitations in time-

sensitive domains, such as finance, healthcare, and social media. To

address these limitations, temporal RDF has been proposed. Tempo-

ral RDF can better describe the timing-related properties of events,

resources, and data.

There are two main approaches to temporal RDF representation.

The traditional approach focuses on preserving the structure of

classical RDF triples, such as RDF reification [1]. However, the stor-

age and query performance of this approach decreases dramatically

as the data volume increases. Therefore, recent work has favored a

second approach, extending the standard triple format to a quadru-

ple or even quintuple format. Zhou T et al. [2], WANG Yin-di [3],

and Yan L [4] all adopt the second approach and then extend the

RDF database based on bit matrices, composite tables, and triple

tables, respectively, to support the management of temporal RDF.

However, all these strategies fail to consider utilizing the prop-

erty characteristics of temporal RDF to improve storage and query

efficiency. For this reason, we decided to use ECS [5] and HINT
𝑚
[6].

The ECS is an efficient RDF index structure that utilizes the inherent

structure of triples. RDF databases can quickly recognize candidate

graph patterns by storing data as graphs in the index and using

ECS to match graph patterns. In addition, the ECS method avoids

generating large intermediate results and reduces storage space

consumption. HINT
𝑚

is a method for indexing time intervals based

on hierarchies. It allows quick querying of time intervals and is

straightforward to implement and expand. Additionally, it facili-

tates time interval operations across all Allen [7] relations. The

contributions of this paper are mainly in three aspects:

1) Based on ECS and HINT
𝑚
, we proposed a temporal RDF

oriented indexH-ECS. The index takes full advantage of the efficient

RDF triples matching of ECS and the fast execution of temporal

queries with HINT.

2) Based on H-ECS, we proposed a pattern matching algorithm

for temporal queries that supports thirteen Allen temporal relations.

3) We used the H-CS index and the matching algorithm to im-

plement TECStore, a temporal RDF-oriented storage and query

engine based on H-ECS, and evaluated the query and storage per-

formance of TECStore by using a synthetic dataset and two real-

world datasets. The experimental results show that TECStore can

significantly outperform AxonDB and PeriodDB regarding storage

and query performance.

2 RELATEDWORK
2.1 Temporal RDF
In addition to RDF reification, temporal RDF can be represented

using quadruple [8][9][10] or quintuples [11][12][13]. Compared to

quadruples, quintuples refine the time of temporal RDF with better

scalability, greater expressiveness, and more efficient processing.

Therefore, temporal RDF is expressed in quintuples in this paper.

A quintuple is of the form: (𝑠, 𝑝, 𝑜) : [𝑡𝑠, 𝑡𝑒] or (𝑠, 𝑝, 𝑜, 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑).
(𝑠, 𝑝, 𝑜) represents the triple part, [𝑡𝑠, 𝑡𝑒] represents the time in-

terval, and (𝑠, 𝑝, 𝑜) : [𝑡𝑠, 𝑡𝑒] means that the triple (𝑠, 𝑝, 𝑜) is valid
within the time interval [𝑡𝑠, 𝑡𝑒]. Several quintuples are illustrated
in Fig. 1(a).

2.2 Extended Characteristic Set
Thomas Neumann and Guido Moerkotte [14] proposed the Char-

acteristic Set (CS), which can identify node types based on the

set of predicates with this node as subject. Meanwhile, Marios
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YunMa

ChongxinCai

WeiCheng

Alibaba

Yiche

Mogu

Yale

NBA

AliHealth

Uber JiangXi

invest

BojunQiu

Kingsoft

ZhuoYue

ZheJiang

co-work

JunLei

liveIn
HuBei

YunMa S1={worksFor,invest,co-work }

ChongxinCai S2={worksFor,invest,study,co-work }

WeiCheng S3={worksFor,liveIn }

BojunQiu S4={worksFor,liveIn,co-work }

JunLei S3={worksFor,liveIn }

Node               Characteristic Set

Triple                                             Extended Characteristic Set

YunMa co-work ChongxinCai E1={S1,S2}

ChongxinCai co-work WeiCheng E2={S2,S3}

BojunQiu co-work JunLei E3={S4,S3}

(a)

(b)

[2011,2015]

[2018,2023]

[1992,2007]

[1969,1987]

(c)

s p o tstart tend

YunMa worksFor Alibaba 1999 2013

ChongxinCai worksFor AliHealth 2015 2018

WeiCheng worksFor Uber 2016 2020

BojunQiu worksFor Kingsoft 1988 2011

JunLei worksFor ZhuoYue 1999 2004

Figure 1: A example of quintuple(a). A temporal RDF graph
(b), its CS and ECS (c).

Meimaris [5] proposed the ECS based on the CS and offered an RDF

storage engine, AxonDB, based on the ECS. When two CSs have

predicates between their nodes, these two CSs can be constituted

as an ECS. In this configuration, the CS of the subject node of the

predicate is the subject CS, and the CS of the object node of the

predicate is the object CS.

Fig. 1(b) and Fig. 1(c) demonstrate the relationship between

CS/ECS and triples. The CS of the node YunMa is (worksFor, invest,
co-work), and the CS of ChongxinCai is (worksFor, invest, study, co-
work), and so on for other nodes. At the same time, node YunMa and
node ChongxinCai appear in the triple (YunMa, co-work, Chongxin-
Cai) as subject and object, respectively, so the combination of their

CSs form an ECS. In this ECS, the CS of YunMa is the subjectCS,

and the CS of ChongxinCai is the objectCS.

2.3 Interval index
Nowadays, researchers have proposed several strategies for interval

indexing by using different data structures and retrieval algorithms.

The 1D-grid[15] is a simple interval data structure in terms of in-

terval indexing. It divides a time axis into several disjoint partitions,

and each time interval is assigned to all partitions that overlap with

it. If the collection contains many long intervals, the index size

may grow large due to excessive replication, which increases the

number of duplicate results to be eliminated.

Instead, Andreas Behrend et al. [16] proposes Period Index. In

Period Index, the whole dataset is divided into many buckets ac-

cording to a certain length from the minimum to the maximum

time interval. Each bucket is further divided into cells of different

levels. Period Index can quickly locate the target bucket by other

algorithms, such as binary search, quickly reducing unnecessary

comparisons. However, in complex Allen temporal queries, the Pe-

riod Index must traverse and compare the interval in different cells

in the target bucket, which incurs a significant time overhead.

On the other hand, George Christodoulou [6] proposes a hier-

archical partitioned interval index structure called HINT, which

creates a hierarchical structure where each level is subdivided into

multiple partitions. Moreover, the time intervals in the dataset will

be assigned to different partitions at different levels based on a

specific allocation algorithm. HINT
𝑚

proposes some optimizations

based on HINT. It uses replication and interval segmentation strate-

gies to avoid duplicate results and reduce the number of interval

matches. In addition, HINT
𝑚

efficiently supports temporal interval

retrieval for temporal relations of Allen [7]. Experiments show that

HINT
𝑚

outperforms other classical interval indexes, such as Inter-

val Tree [17] and Timeline Index [18], in several aspects: throughput,

query speed, space consumption, and update efficiency.

3 OPTIMIZATION OF TEMPORAL INDEXING
FOR EXTENED CHARACTERISTIC SET

3.1 Definitions
Definition 1 (Temporal graph). Temporal graph 𝑮 = 𝑻 ∪ 𝑸 ,

where 𝑻 is a finite set of triples and 𝑸 is a finite set of quintuples.

The Dataset D of Pre-processing in Fig. 2 is the temporal graph

of Fig. 1(b).

Definition 2 (CS). Let 𝑮 = 𝑻 ∪ 𝑸 be a temporal graph and s
be a subject in G. Then the CS of s is defined as 𝑪𝑺 (𝒔) = {𝒑 |∃𝒐 :
(𝒔, 𝒑, 𝒐) ∈ 𝑻 ∨ (𝒔, 𝒑, 𝒐, 𝒕𝒔𝒕𝒂𝒓 𝒕, 𝒕𝒆𝒏𝒅) ∈ 𝑸} and the set of all CS for
the G is defined as
𝑪𝑺 (𝑮) = {𝑪𝑺 (𝒔)|∃𝒑, 𝒐 : (𝒔, 𝒑, 𝒐) ∈ 𝑻 ∨ (𝒔, 𝒑, 𝒐, 𝒕𝒔𝒕𝒂𝒓 𝒕, 𝒕𝒆𝒏𝒅) ∈

𝑸}.

The CS of node YunMa in Fig. 1(b) is {worksFor, invest, co-work}
because these are the only three predicates in the quintuple with

YunMa as the subject. The 𝐶𝑆 (𝐷) of the Dataset D in the Pre-
processing of Fig. 2 contains only S1, S2, S3, and S4 as illustrated in

Fig. 1(c).

Definition 3 (ECS). Let 𝑮 = 𝑻 ∪𝑸 be a temporal graph and 𝒕 =
(𝒔, 𝒑, 𝒐)(𝒓𝒆𝒔𝒑.𝒕 = (𝒔, 𝒑, 𝒐, 𝒕𝒔𝒕𝒂𝒓 𝒕, 𝒕𝒆𝒏𝒅)) be a tuple in 𝑻 (𝒓𝒆𝒔𝒑.𝑸).
Then the extended characteristic set 𝑬𝑪𝑺 (𝒕) of 𝒕 is defined as
𝑬𝑪𝑺 (𝒕) = {𝑪𝑺 (𝒔), 𝑪𝑺 (𝒐)}. The set of all ECS in G is: 𝑬𝑪𝑺 (𝑮) =
{𝑬𝑪𝑺 (𝒕)|𝒕 ∈ 𝑻 ∪ 𝑸}.

The ECS of the quintuple (YunMa co-work ChongxinCai 1999 2013)
of Dataset D in Pre-processing in Fig. 2 is E1 of Fig. 1(c) because

the CS of the subject and object of this quintuple are S1 and S2,

respectively. The set of all ECS of Dataset D contains only E1, E2

and E3 of Fig. 1(c).
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Definition 4 (ECSLinks). Let 𝑮 = 𝑻 ∪ 𝑸 be a temporal graph,
𝒈𝒆𝒕𝑺 (𝒕) be a function to get the subject of 𝒕 , and𝒈𝒆𝒕𝑶 (𝒕) be a function
to get the object of 𝒕 . Then ECSLinks of 𝑮 is:
𝑬𝑪𝑺𝑳𝒊𝒏𝒌𝒔 = {𝑬𝑪𝑺 (𝒊) → {𝑬𝑪𝑺 (𝒎)}| 𝒊, 𝒎 ∈ 𝑻 ∪ 𝑸
∧ 𝑪𝑺 (𝒈𝒆𝒕𝑶 (𝒊)) = 𝑪𝑺 (𝒈𝒆𝒕𝑺 (𝒎))}.

Fig. 2 shows the ECSLinks for Dataset D in the Pre-procession in

the CS/ECS Index Structure. The reason is that among all the ECSs

of Dataset D, only E1 and E2 satisfy that the object CS of the former

ECS is the subject CS of the latter ECS.

Definition 5 (property bitmaps). Let 𝑮 = 𝑻 ∪𝑸 be a temporal
graph, 𝑷𝑺𝒆𝒕 be the set of ids of predicates in G, and 𝒊𝒔𝑬𝒙 𝒊(𝒊, 𝑺𝒋) be the
function that determines whether a predicate with id 𝒊 in CS 𝑺𝒋. If it ex-
ists, it returns 1, otherwise it returns 0. The property bitset of CS 𝑺𝒋 is a
one-dimensional array defined as 𝑷𝑺 (𝑺𝒋) = (𝒊𝒔𝑬𝒙 𝒊(𝒊, 𝑺𝒋), 𝒊𝒔𝑬𝒙 𝒊(𝒊 +
1, 𝑺𝒋), ..., 𝒊𝒔𝑬𝒙 𝒊(𝒊 + 𝒏, 𝑺𝒋)), 𝒊, 𝒊 + 1, ..., 𝒊 + 𝒏 ∈ 𝑷𝑺𝒆𝒕 . The property
bitmaps of G is:

𝑷𝑩(𝑮) =



















𝑷𝑺 (𝑺𝒋1)
𝑷𝑺 (𝑺𝒋2)

...
𝑷𝑺 (𝑺𝒋𝒏)



















,

𝑺𝒋1, 𝑺𝒋2, ..., 𝑺𝒋𝒏 ∈ 𝑪𝑺 (𝑮).

In the property bitmaps of theCS/ECS Index Structure in Fig. 2, the
property bitset of CS S1 is {1,1,1,0,0} because S1 contains only three

predicates: worksFor, invest, and co-work. Moreover, the property

bitmaps of Dataset D is the stacking of bitsets of all CSs and is a

two-dimensional array.

Definition 6 (CSIndex). Let 𝑮 = 𝑻 ∪𝑸 be a temporal graph and
𝑪𝑺 𝒊𝒅(𝑺 𝒊) be a function that gets the id of CS 𝑺 𝒊. Then the CSIndex of
G is defined as 𝑪𝑺𝑰 𝒏𝒅𝒆𝒙 (𝑮) = {𝑪𝑺 𝒊𝒅(𝑺 𝒊) → 𝑷𝑺 (𝑺 𝒊)|𝑺 𝒊 ∈ 𝑪𝑺 (𝑮)}.

In Fig. 2, the CSIndex of Dataset D in Pre-processing is shown

in the CS/ECS Index Structure.

Definition 7 (P-SO-T table). Let 𝑮 = 𝑻∪𝑸 be a temporal graph,
𝑷𝑺𝒆𝒕 be the set of ids of predicates in 𝑮 , 𝒑 be any of the predicates in
𝑷𝑺𝒆𝒕 , and 𝑮𝑻𝒂𝒃𝒍𝒆 be a quintuple table consisting of the subject id,
predicate id, object id, start time and end time of 𝑮 together. Then the
𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 of 𝒑 is defined as

𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 𝒑 =



















(𝒔 𝒊𝒅1, 𝒐 𝒊𝒅1, 𝒕𝒔𝒕𝒂𝒓 𝒕1, 𝒕𝒆𝒏𝒅1)
(𝒔 𝒊𝒅2, 𝒐 𝒊𝒅2, 𝒕𝒔𝒕𝒂𝒓 𝒕2, 𝒕𝒆𝒏𝒅2)

...
(𝒔 𝒊𝒅𝒏, 𝒐𝒊𝒅𝒏, 𝒕𝒔𝒕𝒂𝒓 𝒕𝒏, 𝒕𝒆𝒏𝒅𝒏)



















,

(𝒔 𝒊𝒅1, 𝒑, 𝒐 𝒊𝒅1, 𝒕𝒔𝒕𝒂𝒓 𝒕1, 𝒕𝒆𝒏𝒅1), (𝒔 𝒊𝒅2, 𝒑, 𝒐 𝒊𝒅2, 𝒕𝒔𝒕𝒂𝒓 𝒕2, 𝒕𝒆𝒏𝒅2), ...,
(𝒔 𝒊𝒅𝒏, 𝒑, 𝒐𝒊𝒅𝒏, 𝒕𝒔𝒕𝒂𝒓 𝒕𝒏, 𝒕𝒆𝒏𝒅𝒏) ∈ 𝑮𝑻𝒂𝒃𝒍𝒆. The 𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆
of 𝑮 is defined as

𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 =



















𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 𝒑1
𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 𝒑2

...
𝑷 − 𝑺𝑶 − 𝑻 𝒕𝒂𝒃𝒍𝒆 𝒑𝒏



















,

CSid properties

S1 { 1, 1, 1, 0, 0 }

S2 { 1, 1, 1, 1, 0 }

S3 { 1, 0, 0, 0, 1 }

S4 { 1, 0, 1, 0, 1 }

CS Index

ECS Index

ECSid subjectCS objectCS

E1 S1 S2
E2 S2 S3
E3 S4 S3

CSid sids

S1 {1}

S2 {5}

S3 {9,15}

S4 {12}

CS-s Map

E1 E2

E2

E3

ECSLinks

CS/ECS Index Structure
Temporal Index

s p o tstart tend

YunMa worksFor Alibaba 1999 2013

YunMa invest Mogu 2011 2015

YunMa invest Yiche 2015 2016

YunMa co-work ChongxinCai 1999 2013

ChongxinCai worksFor AliHealth 2015 2018

ChongxinCai study Yale 1987 1990

ChongxinCai invest NBA 2018 2023

ChongxinCai co-work WeiCheng 2005 2012

WeiCheng worksFor Uber 2016 2020

WeiCheng liveIn JiangXi 1983 2000

BojunQiu worksFor Kingsoft 1988 2011

BojunQiu liveIn ZheJiang 1964 1980

BojunQiu co-work JunLei 1992 2007

JunLei worksFor ZhuoYue 1999 2004

JunLei liveIn HuBei 1969 1987

Pre-processing

sid oid tstart tend

1 2 1999 2013
5 6 2015 2018
9 10 2016 2020
12 13 1988 2011
15 16 1999 2004

P-SO-T table 1

P-SO-T table 2

. . .HINT
m

 2

. . .

sid pid oid tstart tend

1 1 2 1999 2013

1 2 3 2011 2015

1 2 4 2015 2016

1 3 5 1999 2013

5 1 6 2015 2018

5 4 7 1987 1990

5 2 8 2018 2023

5 3 9 2005 2012

9 1 10 2016 2020

9 5 11 1983 2000

12 1 13 1988 2011

12 5 14 1964 1980

12 3 15 1992 2007

15 1 16 1999 2004

15 5 17 1969 1987

Dataset D

HINT
m

 1

①

②

③

④

⑤

①
②
③

④
⑤

P1=worksFor
P2=invest
P3=co-work
P4=study
P5=liveIn

1S1

S2

S3

S4

1 1 0 0

property bitmaps

1 1 1 1 0

1 0 0 0 1

1 0 1 0 1

P1 P2 P3 P4 P5

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13P4,14P4,15

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5

P2,0 P2,1 P2,2 P2,3

P1,0 P1,1

P0,0

P3,6 P3,7

{1,2,1999,2013} {5,6,2015,2018} {9,10,2016,2020} {12,13,1988,2011}

{15,16,1999,2004}

Figure 2: The H-ECS index construction process in TECStore. Dataset D is the quintuple dataset corresponding to the temporal
RDF graph in Fig. 1(b).
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𝒑1, 𝒑2, ..., 𝒑𝒏 ∈ 𝑷𝑺𝒆𝒕 .

In Fig. 2, the P-SO-T table for the predicate worksFor is P-SO-T

table 1 since worksFor has a pid of 1. Inside is a table of unique

identifiers for the quintuples of ignored predicates with worksFor

as the predicate.

Definition 8 (CS-s Map). Let 𝑮 = 𝑻 ∪ 𝑸 be a temporal graph,
𝑪𝑺 𝒊𝒅𝒔 be a set of ids of CSs in 𝑪𝑺 (𝑮), 𝒔 be any subject in 𝑮 , 𝒔 𝒊𝒅 be
the id of 𝒔, 𝒈𝒆𝒕𝑪𝑺 𝒊𝒅(𝑺 𝒊) be a function that gets the CS id of CS 𝑺 𝒊,
and 𝑺𝑰𝑫𝒔 be a set of ids of nodes with any CS in 𝑪𝑺 (𝑮). Then the
𝑪𝑺−𝒔 𝑴𝒂𝒑 of G is defined as 𝑪𝑺−𝒔 𝑴𝒂𝒑 = {𝑪𝑺 𝒊𝒅 → {𝒔 𝒊𝒅}|𝑪𝑺 𝒊𝒅 ∈

𝑪𝑺 𝒊𝒅𝒔 ∧ 𝒔 𝒊𝒅 ∈ 𝑺𝑰𝑫𝒔 ∧ 𝒈𝒆𝒕𝑪𝑺 𝒊𝒅(𝑪𝑺 (𝒔)) = 𝑪𝑺 𝒊𝒅}.

In Fig. 2, the CS-s Map of the Pre-processing Dataset D is shown

in the CS-s Map of the Temporal Index. In which the CS with CSid S3
corresponds to sids 9 and 15, and the subjects of the corresponding

quintuple areWeiCheng and JunLei. The reason is that the CS of S3

is {worksFor,liveIn}, and only nodeWeiCheng and JunLei have the
same CS among all the nodes in D.

3.2 H-ECS index construction
The H-ECS index contains three parts: the triple part, the temporal

part, and the composite part. The role of the triple part is to find

the ECS nodes that match the ECS matching condition, while the

role of the temporal part is to select the ECS nodes that match

the HINT
𝑚

matching condition from those ECS nodes. Finally, the

composite part connects the triple and temporal parts, which can

quickly determine the subject nodes corresponding to a CS and

speed up the matching process.

The H-ECS index is created in several steps. First, a CS/ECS index

is created for the triple part of the temporal graph, and that CS/ECS

index is the triple part of the H-ECS. Subsequently, the property

bitmaps in the CSIndex are split per property bit basis, and multiple

HINT
𝑚

indexes are created for the set of tuples associated with

the split property bits. These HINT
𝑚

indexes become the temporal

part of H-ECS. Finally, the H-ECS index creates the 𝐶𝑆 − 𝑠𝑀𝑎𝑝 , a

key-value index storing the mapping relations between CSs and

subject nodes, to minimize unnecessary matches. This key-value

index becomes the composite part of H-ECS.

As shown in the Pre-processing section of Fig. 2, each entity and

predicate assignd unique identifiers using sequential numbering

starting from 1. The dataset D will be stored using a table con-

taining five columns. Each row will sequentially store sid, pid, oid,

tstart, and tend. The correspondence between the identifier of each

element and the original entity will be saved in the data dictionary

for the last result generation.

As shown in the CS/ECS Index Structure section of Fig. 2, we

created the CS/ECS index and made it the triple part of the H-ECS.

First, a unique identifier is assigned to the different CSs in the

dataset, and their predicate sets are stored in the property bitmaps

form of Fig. 2. Then, the correspondence between CS identifiers and

property bitmaps is stored in the key-value index CSIndex. Similarly,

the ECSIndex will hold the unique identifier of each ECS and the

correspondence between ECSs. Finally, the ECSLinks defined in

Definition 4 is stored.

After the construction of the triple part of the H-ECS, the con-

struction of the temporal part of the H-ECS is started. As shown in

the Temporal Index section in Fig. 2, we split the property bitmaps of

CSIndex by property bits. The number of split blocks is equal to the

number of different predicates in the dataset D. After partitioning,

different blocks represent predicates, and the block number corre-

sponds to the pid value. We then store the tuples corresponding

to each block in the corresponding 𝑃 − 𝑆𝑂 −𝑇 𝑡𝑎𝑏𝑙𝑒 and construct

a HINT
𝑚

index for each 𝑃 − 𝑆𝑂 −𝑇 𝑡𝑎𝑏𝑙𝑒 . These HINT𝑚 indexes

become the temporal part of the H-ECS. In the process of construct-

ing the HINT
𝑚

index, we first determine the partition range based

on the minimum time and maximum time in the 𝑃 − 𝑆𝑂 −𝑇 𝑡𝑎𝑏𝑙𝑒 .

Then, each record in the 𝑃 − 𝑆𝑂 −𝑇 𝑡𝑎𝑏𝑙𝑒 is assigned to the corre-

sponding interval by the HINT
𝑚

assignment algorithm with time

as the entry parameter. The Temporal Index section in Fig. 2 shows

the result of assigning the items in 𝑃 − 𝑆𝑂 − 𝑇 𝑡𝑎𝑏𝑙𝑒 with pid 1

according to the HINT
𝑚

interval assignment algorithm. HINT
𝑚

is logically a hierarchical structure, and we have implemented it

at the physical level using a key-value structure. The advantage of

using the key-value structure is that the items in 𝑃 − 𝑆𝑂 −𝑇 𝑡𝑎𝑏𝑙𝑒

corresponding to each partition can be found quickly during the

query process.

In addition, to reduce unnecessary temporal matching, another

key-value index,𝐶𝑆 − 𝑠 𝑀𝑎𝑝 , is incorporated as the composite part

of H-ECS. According to the definition of CS in Definition 2, there

may be several different nodes with the same CS in an RDF dataset.

In order to improve the speed of temporal matching of property

bits of CS, we constructs a key-value index 𝐶𝑆 − 𝑠 𝑀𝑎𝑝 to save the

mapping relationship between CS and the set of nodes with the

same CS.

4 TEMPORAL QUERY
4.1 Temporal Query Syntax
James F Allen has proposed thirteen temporal relations in [7]. These

relations include the seven relations shown in Fig. 3(a) and the

inverse of the first six (the temporal positions before and after the

Temporal Relation Constraint

[Ts,Te] BEFORE [T ś,T é] Te<T ś

[Ts,Te] MEETS [T ś,T é] Te=T ś

[Ts,Te] FINISHES [T ś,T é] Ts>T ś and Te=T é

[Ts,Te] STARTS [T ś,T é] Ts=T ś and Te<T é

[Ts,Te] DURING [T ś,T é] Ts>T ś and Te<T é

[Ts,Te] OVERLAP [T ś,T é] Ts<T ś<Te and Te<T é

[Ts,Te] EQUALS [T ś,T é] Ts=T ś and Te=T é

iSPARQL EXAMPLE

SELECT ?s WHERE{

(?s worksFor Alibaba): ts1, te1.

(?s invest ?o): ts2, te2.

}FILTER(

BEFORE(?ts1,?te1,2015,2018)

&&

DURING(?ts2, ?te2,2014,2017)

)

(a)

(b)

Figure 3: thirteen temporal relations and the corresponding
constraints(a) and a iSPARQL example(b)



Index Optimization of Extended Characteristic Set for Temporal RDF IJCKG 2023, December 2023, Miraikan, Tokey, Japan

Query Parse

Temporal Parse

Extract Query 

CS/ECS

get ecs chains and spoId-Time 

Table

Query Execute

Match subjectCS to 

qsubjectCS

join matched ecs triples

Match objectCS to 

qobjectCS

Match property bitmap of 

subjectCS and qsubjectCS with

temporal

get matched ecs triples

ECS match

Temporal Match

output result

Query Match

Match property bitmap of 

objectCS and qobjectCS with

temporal

Figure 4: TECStore query process

relations are swapped). Ts, Te, and T´s, T´e represent the start time

and end time of two time periods, respectively.

To fully express the temporal relationships of query statements,

TECStore used iSPARQL [11] as the temporal query syntax. Fig. 3(b)

shows an example of finding a personwhoworked at Alibaba before

2015 and had investments between 2014 and 2017.

4.2 Query processing
As shown in Fig. 4, the query processing consists of three steps:

Query Parse, Query Match, and Query Execute. The CS/ECS in the

basic graph schema, the ECSLinks of these ECSs, and the temporal

query conditions are first resolved in the Query Parse step. For

clarity of the later description, the ECSLinks of the query graph

are referred to as ECS chains. Then, in the Query Match step, the

matching ECSLinks of the ECS chains are found using the H-ECS

index. Finally, these matching ECSLinks are merged and joined in

the Query Execute step to generate the final result.

In theQuery Parse step, the CS and ECS in the basic graph schema

of the query statement and the ECS chains of these ECSs are first

extracted according to the CS/ECS definitions in Definition 2 and

Definition 3. Subsequently, the CSIndex and ECSIndex of the basic

graph schema in the query statement are constructed. Unlike the

CSIndex of the dataset, each CS in a query statement has a unique

identifier, even if they have the same properties. This approach

improves query speed by eliminating the need to consider cases

where multiple nodes have the same CSid. Finally, temporal query

conditions is extracted for each query pattern, including the CS id

to which the query pattern belongs, the ids of the subject, predicate,

and object of the non-variable, constraint time interval, and the

keywords. In the TECStore, this information is stored in a 7-column

two-dimensional array called 𝑠𝑝𝑜𝐼𝑑 − 𝑇𝑖𝑚𝑒 𝑇𝑎𝑏𝑙𝑒 . Each row of

this two-dimensional array represents a temporal query condition

for a query pattern. The order of the columns is CS id, subject id,

predicate id, object id, start time of the constraint time, end time of

the constraint time, and id of the keyword, in that order.

In the Query Match step, we utilized the triple part of the H-ECS

index to match the ECS nodes in the ECS chain and the ECS nodes

in the ECSLink in the order of the ECS nodes. The matching of

the ECS includes the property bitmaps matching of the subject CS

and the object CS, and we utilized the temporal part of the H-ECS

index to perform the temporal matching after the matching of each

property bitmap is finished. This process also utilizes the composite

part of the H-ECS index to interrupt unnecessary matching in time

to improve the matching speed.

Algorithm 1 shows the subjectCS matching process in detail, and

the objectCS matching process is the same as the subjectCS. Line

2 utilizes the composite part of the H-ECS index to obtain the ids

of nodes whose CS is jsubjectCS. Then, in line 3, the triple part of

H-ECS is used to find the property bitset of jsubjectCS. Lines 4 to 8

find the query pattern corresponding to all predicates of qsubjectCS.

Lines 9 to 14 are the property bitmaps and temporal matching of

the query pattern, where line 13 utilizes the temporal part of the

H-ECS index. The temporalMatching function in line 13 uses the

HINT
𝑚

matching algorithm. It first finds a matching interval based

on the input keywords and then equivalently matches the constant

subject and object of the P-SO-T data within the interval.

Algorithm 1 subjectCS Match

Input: jECS: current matching ECS in ECSLink,

qECS: current matching ECS in ECS chain,

CS-sMap, CSIndex, spoId-TimeTable.

Output: sids:A result set of sid

1: 𝑗𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆 ← 𝑗𝐸𝐶𝑆.𝑔𝑒𝑡𝑆𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆 ()
𝑞𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆 ← 𝑞𝐸𝐶𝑆.𝑔𝑒𝑡𝑆𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆 ()

2: 𝑞𝐶𝑆𝐼𝑡𝑒𝑚𝑠 ← 𝑛𝑒𝑤𝐿𝑖𝑠𝑡 ()
𝑠𝑖𝑑𝑠 ← 𝐶𝑆 − 𝑠𝑀𝑎𝑝.𝑔𝑒𝑡 ( 𝑗𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆)

3: 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐵𝑖𝑡𝑆𝑒𝑡 ← 𝐶𝑆𝐼𝑛𝑑𝑒𝑥 .𝑔𝑒𝑡 ( 𝑗𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆)
4: for 𝑖 = 0 to 𝑠𝑝𝑜𝐼𝑑 −𝑇𝑖𝑚𝑒𝑇𝑎𝑏𝑙𝑒.𝑠𝑖𝑧𝑒 do
5: if 𝑠𝑝𝑜𝐼𝑑 −𝑇𝑖𝑚𝑒𝑇𝑎𝑏𝑙𝑒 [𝑖] [0] == 𝑞𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐶𝑆 then
6: 𝑞𝐶𝑆𝐼𝑡𝑒𝑚𝑠.𝑎𝑑𝑑 (𝑠𝑝𝑜𝐼𝑑 −𝑇𝑖𝑚𝑒𝑇𝑎𝑏𝑙𝑒 [𝑖])
7: end if
8: end for
9: for 𝑗 = 0 to 𝑞𝐶𝑆𝐼𝑡𝑒𝑚𝑠.𝑠𝑖𝑧𝑒 do
10: 𝑝𝑖𝑑 ← 𝑞𝐶𝑆𝐼𝑡𝑒𝑚𝑠.𝑔𝑒𝑡 ( 𝑗) [2]
11: if 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐵𝑖𝑡𝑆𝑒𝑡 .𝑔𝑒𝑡 (𝑝𝑖𝑑) == 0 or 𝑠𝑖𝑑𝑠.𝑠𝑖𝑧𝑒 == 0 then
12: return 𝑛𝑢𝑙𝑙

13: end if
14: 𝑠𝑖𝑑𝑠 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑞𝐶𝑆𝐼𝑡𝑒𝑚𝑠.𝑔𝑒𝑡 ( 𝑗))
15: end for
16: return 𝑠𝑖𝑑𝑠

After match, the quintuple with the sid in the sids as the subject

is collected. Moreover, with jECS as the key, the collection of triple

part of these quintuples as the value is stored in the key-value index
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𝑒𝑐𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑠 − 𝑀𝑎𝑝 , which will provide a source of results for the

Query Execute step.
In the Query Execute step, merge joins are performed on the

triples in 𝑒𝑐𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑠𝑀𝑎𝑝 . The ECSLinks matched by each ECS chain

are calculated in the Query Match step. The tuples of the ECS nodes

inside each ECSLink are merge-joined first, and then hash-joins

are performed on the common properties of the different ECSLinks

to obtain the final query result. The merge join algorithm used by

TECStore is similar to AxonDB.

5 EVALUATION
To validate the effectiveness of the strategy suggested in this work,

the performances of TECStore, AxonDB, and PeriodDB are com-

pared in terms of storage space, index building speed, and query

speed. Among them, AxonDB is a classic RDF database based on

ECS. It adopts the RDF reification temporal data model that can be

directly applied to the ECS index. PeriodDB is a database based on

AxonDB with Period Index [16]. It adopts the same temporal data

model of quintuple as TECStore and adjusts the index construction

and query algorithm for the characteristics of the Period Index to

support temporal query. TECStore, AxonDB, and PeriodDB are

all implemented in Java 1.8. All experiments were conducted on

an Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00 GHz server running

CentOS 7.7 with 128GB RAM.

The experimental datasets include synthetic and real-world

datasets. The synthetic dataset uses the LUBM [19] dataset, which

is a synthetic dataset constructed using the LUBM data generator.

The real-world datasets include YAGO2 [20], a Wikipedia-based

spatiotemporal real-world dataset, and FIN, a real-world dataset

of equity transactions in the financial sector. The information of

different datasets is shown in Table 1, where time-ratio indicates

the proportion of tuples with time to the total tuples, max-path

indicates the maximum number of connected triples(The object of

the former triple is the subject of the latter triple), and predicate-

num refers to the number of different predicates.

Table 1: Dataset characteristics

source name triples time-ratio max-path predicate-num

LUBM

lubm-10M 10312342 100% 9 8

lubm-20M 21233245 100% 9 8

FIN

fin-30W 363216 25% 5 5

fin-1M 1089604 27% 5 5

YAGO2

yago2-3M 3268944 50% 3 6

yago2-5M 5085024 50% 3 6

5.1 Storage Space
As shown in Fig. 5, TECStore occupies less storage space than the

other two systems in all experimental datasets. In the more time-

intensive YAGO2 and LUBM datasets, TECStore occupies 71% to

75% less storage space than AxonDB and 51% to 67% less storage

space than PeriodDB.

There are several reasons for the experimental results. First,

TECStore and PeriodDB reduce the complexity of temporal RDF

data at the level of the underlying storage model. At the same time,

 TECStore
 AxonDB
 PeriodDB

Figure 5: storage space comparison

the RDF reification method used by AxonDB increases the number

of nodes and relationships in the dataset, as it takes five triples

to represent a quintet containing time using reification, which

results in AxonDB taking upmore space than the other two systems.

Second, the additional space taken up by the buckets and cells of

the Period Index used by PeriodDB increases with time, causing

PeriodDB to take up more space than TECStore.

5.2 Index Building Time
In this paper, the speedup ratio is employed as a metric to explain

the time-consumption comparison of each system. As shown in

Equation (1), 𝑇𝑓 is the time consumed by AxonDB or PeriodDB,

and 𝑇𝑡 is the time consumed by TECStore.

𝑆𝑡 = 𝑇𝑓 /𝑇𝑡 (1)

In the case of TECStore, the index building time refers to the

creation of the H-ECS index presented in this paper. For AxonDB,

the index building time refers to the building time of its ECS index.

Finally, for PeriodDB, the index building time includes the combined

time of building the ECS and Period indexes. The experimental

results in Fig. 6 show that TECStore builds indexes 4 to 28 times

faster than AxonDB and 1.6 to 8.5 times faster than PeriodDB.

The main reason is that the H-ECS index used by TECStore does

not have too many loops or nested loop operations. In contrast,

RDF reification leads to only five different predicates in the dataset,

resulting in only two CSs in the entire dataset. AxonDB also conse-

quently spends much time looking for object-subject joins when

extracting ECSs. In addition, PeriodDB needs to divide the entire

dataset into several buckets using traversal and then traverse the en-

tire dataset again to assign the time intervals to the cells of different

buckets in the index building process. In the process of assigning,

it is necessary to traverse the buckets again. Multiple traversals of

the entire dataset and the nested loops cause the index building

time of PeriodDB to be higher than the one of TECStore.
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Figure 6: index building speed comparison

5.3 Query Performance
To evaluate the performance of TECStore’s temporal queries, three

types of queries are defined in this paper
1
:

(1) The simple query, which contains only one triple pattern;

(2) The path query, which consists of multiple connected triple

patterns, where the object of the previous triple is equal to

the subject of the subsequent triple;

(3) The star query, which consists of more than two triple pat-

terns with the same subject.

For TECStore and PeriodDB, all queries in this paper are written

using iSPARQL statements. In addition, for AxonDB, query state-

ments are converted to RDF reification form and temporal relations

will be filtered using the FILTER keyword.

To more accurately evaluate the query efficiency of TECStore,

all three types of queries are evaluated on different scales for each

dataset, and the geometric mean of all the results is the final query

results. For simple queries, we evaluated every query with temporal

relationships. For path queries, we evaluated all queries with the

1
The queries for TECStore: https://github.com/EanWo/TECStore

number of triples ranging from 2 to the max-path in the evaluated

dataset, with time constraints added to each triple. For star queries,

on the other hand, we evaluated all queries with the number of

triples ranging from 2 to the predicate-num in the evaluated dataset,

with half of the triples adding a time limit.

The speedup ratio in Equation (1) is used to represent the elapsed

time ratio of the other systems to TECStore. As shown in Fig. 7,

the query efficiency of TECStore is tens of times higher than Ax-

onDB and more than 100 times higher in lubm-20M datasets. There

is also up to 26 times improvement compared to PeriodDB. The

first reason is that the triple part of the H-ECS index used by TEC-

Store can quickly exclude a large number of non-target tuples

based on the structural features of the tuples. Then, the temporal

part of the H-ECS can pick out tuples that meet the conditions of

the temporal query from the non-excluded tuples. Moreover, the

composite part of the H-ECS can accelerate the matching process.

On the other hand, AxonDB adopts the RDF reification approach,

which makes the whole dataset have at most two CSs: (hasSub-

ject,hasPredicate,hasObject) and (hasSubject,hasPredicate,hasObjec

t ,hasStartTime, hasEndTime). This makes many nodes have the

same CS, and CS matching cannot filter out many nodes at once.

As a result, exponential time consumption arises from the need to

compare each potential node in the matching process. Secondly,

the Period Index used by PeriodDB can only query intersecting

intervals in temporal query, resulting in querying other different

temporal relations requiring further traversal judgment. These in-

direct operations will generate much time overhead, so the query

efficiency will be lower than TECStore.

In addition, we also observe that the query efficiency advan-

tage of TECStore becomes increasingly evident as the amount of

data increases. The reason is that the H-ECS index proposed in

this paper not only fully utilizes the ability of ECS to answer com-

plex queries quickly and the ability of HINT
𝑚

to execute temporal

queries quickly but also reduces unnecessary pattern matching

to improve query speed. These advantages will become more and

more obvious as the complexity of the query increases.
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Figure 7: speedup ratios of AxonDB(solid line) and PeriodDB(dashed line) for three query types: simple(a), path(b), and star(c)
on different datasets

https://github.com/EanWo/TECStore
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6 CONCLUSIONS
In order to realize efficient management of temporal RDF data, the

new composite H-ECS index based on an efficient RDF index ECS

and an advanced time interval index is proposed in this paper. Also,

based on H-ECS, we proposed a specific pattern matching algorithm

for typical queries on temporal RDF. In addition, a temporal RDF

data storage and query engine called TECStore is implemented,

equipped with H-ECS indexing and the matching algorithm pro-

posed in this paper. Compared to an ECS-based AxonDB database,

our architecture reduces storage space by 71% to 75% and improves

query and index building speeds by tens of times. Storage space,

index building speed and query speed are significantly improved

compared to PeriodDB, a database combining AxonDB and Period

Index.

Currently, H-ECS indexing is only supported to run on a single

machine, and its performance in handling big data still needs to be

improved. We plan to investigate further the distributed extension

of the H-ECS index in future work. Meanwhile, the H-ECS index

only supports two-pair relationships based on ordinary graphs, sim-

plifying the complexity of data relationships. At the same time, hy-

pergraphs can more accurately describe the relationships between

multiple associated entities. Therefore, we will also investigate the

use of the H-ECS index to manage hypergraph data in our future

work.
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