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ABSTRACT
A pre-trained large language model (LLM) has the potential to solve
a knowledge graph completion (KGC) problem, i.e., link predic-
tion, under an open-world environment where unknown entities
of knowledge graph (KG) need to be predicted. However, many
studies on LLM-based KGC either require other resources than
the given KG for constructing LLM prompts or cannot predict the
unknown entities consisting of several words, e.g., noun phrases
such as seafood pizza, minced pork, etc. We therefore propose a
probabilistic model based on a latent space model that incorpo-
rates LLM for such environments. Monte Carlo implementation
of the model enables us to obtain KG-entities and their posterior
probability even when they consist of several words. Prompts for
LLM are constructed by retrieving related facts from the given
KG, which does not require additional resources. We utilized both
domain-specific KG extracted fromWikidata and human prediction
results by crowdworkers in our closed- and open-world evaluations.
The results showed that real unknown entities could be accurately
predicted and that the number of retrieved facts affected the KGC
performance.
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Figure 1: Concept of our method to estimate a target triple:
(“pizza”, “made from”, “?”). Dashed lines represent a missing
entity.

1 INTRODUCTION
1.1 Motivation
The construction of a specialized knowledge base (KB) is important
when developing dialogue systems in a specific domain. A graph-
structured KB, known as a knowledge graph (KG) [2, 30, 34], is
widely utilized in many applications [38] due to its flexible repre-
sentation of knowledge: for example, some studies have focused on
a food-domain KG for food recommendation and dialogue systems
[9, 13, 16]. KG is defined by sets of entities, relations, and facts
represented as a triple (head entity, relation, tail entity), abbreviated
hereafter as (ℎ, 𝑟, 𝑡), e.g., (“pizza”, “made from”, “olive oil”).

Since KGs usually have missing entities, we need to fill them
in (especially well-known ones) either manually or by machine
learning methods to prevent poor system responses. For example,
although “basil” can be an ingredient of “pizza”, there is no link
between basil and pizza in Wikidata. Because some people may not
acknowledge the relationship, it is useful to represent such possibil-
ity by, e.g., posterior probability or confidence score. Additionally,
the well-known entities themselves may not exist in the seed KG.
Hereafter, we focus on the KG completion (KGC) problem: specifi-
cally, a link prediction problem where the tail entity 𝑡 is predicted
given a query of a head entity ℎ and a relation 𝑟 in a food-domain
KG, as shown in the upper part of Fig. 1. The predicted entities will
be utilized to make the system responses more reliable and accurate
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in some tasks, such as question answering and explanation of food
recipe.

Missing entities of KG need to be completed even under an
open-world and resource-restricted environment. An open-world en-
vironment [25] means that some entities may not be present in the
KG, while a closed-world environment means that all entities are
already known. For example, “basil” is a missing entity under open-
world environment while “olive oil” is not in Fig. 1. It is necessary
to predict any relationships between known entities and entities
not in the KG, such as new words and orthographical variants. It
is not realistic to assume that all such entities appearing in an ap-
plication (e.g., dialogue) are included in KGs under an open-world
environment. Additionally, domain-specific KGs may have no exter-
nal resources such as definitions or descriptive texts about entities.
In such cases, KGC should be performed utilizing only information
of the KG itself, which means a resource-restricted environment.

Recent KGCmethods utilizing pre-trained large language models
(LLM) [1] have the potential to handle KGC under an open-world
environment. Since LLMs are trained with a large amount of text
data, missing triples of KG can be predicted by extracting fact
information from the LLM. The textual representation of unknown
entities is acceptable as an input sentence of LLM in both triple
classification [20] and link prediction [22, 26] techniques. Here,
the triple classification problem predicts whether a given triple (ℎ,
𝑟 , 𝑡 ) exists or not [23]. The design of the conditional sentence of
LLM (input/prompt) affects the prediction performance, so template-
based hard prompts are typically used in KGC [1]. Some methods
require additional descriptions or definitions of an entity, or may
require fine-tuning [4, 20, 26, 29].

The above LLM-based KGCs and prompt designs cannot be ap-
plied to our link prediction problem under an open-world and
resource-restricted environment because unknown entities them-
selves are not directly estimated in the previousworks, whichmeans
their candidates are required in advance due to their triple classifi-
cation formulation. For example, if “basil” is given as a candidate
for an unknown entity, the previous methods can only be applied
by making a hypothetical triple (“pizza”, “made from”, “basil”). We
need to prepare such entity candidates in some way. Although a sin-
gle word entity is directly estimated via masked-LLM [22], entities
consisting of several words, e.g., noun phrases such as seafood pizza
and minced pork, should also be considered. Existing prompt strate-
gies are also unusable because they require additional resources
[26] or assume a triple classification setting [20]. While Cohen et al.
[6] examined an automatic construction of KG using LLM from a
few seed entities, their assumption is different from ours.

In light of the above, we propose a probabilistic model based on
LLM and KG retrieval for the open-world link prediction problem.
Generated text (character sequence) from LLM is treated as a latent
variable in terms of a generative probabilistic model [5], which
enables us to obtain the posterior probability of estimation. A tail
entity is estimated and extracted from the text, and its posterior
probability is then calculated through Monte Carlo approximation.
Both single word and noun phrase are treated as candidates of
entities in this paper. Prompts for LLM are constructed by retriev-
ing facts related to a given query from the given KG itself, which
means no additional resources are required. Both domain-specific

KG extracted from Wikidata and real predicted facts by crowd-
workers were utilized in our evaluation. We investigated 1) the link
prediction performance of our retrieval-based prompts and 2) the
prediction ability of real unknown entities using a crowdsourcing
dataset by experiments.

1.2 Related Work
Our work is related to KGC methods based on embedding, pre-
trained LLM with fine-tuning, and LLM with prompting (without
fine-tuning). With the LLM-based methods, we focus on the “Ac-
cess” operation mentioned in [1], such as the “Fine-tuning” and
“Prompting” techniques.

Conventional embedding-based KGC approaches [3, 21, 28, 32,
35, 36] are well-known for their closed-world assumption. In par-
ticular, link prediction methods usually estimate a missing entity
from their entity candidates by capturing the structural patterns of
KG. A fact’s confidence score, such as 𝑝 (𝑧 |ℎ, 𝑟, 𝑡), which represents
whether it is true (𝑧 = 1) or false (𝑧 = 0) is usually evaluated. Such
score itself corresponds to the score for the triple classification
problem. In the case of the link prediction setting, the score of each
entity candidate 𝑡 , e.g. 𝑝 (𝑧 = 1|ℎ, 𝑟, 𝑡), is first calculated one by one,
and then the entity with a maximum score among candidates is
estimated as the tail entity of (ℎ, 𝑟, ?).

Although KGC methods using a pre-trained LLM with fine-
tuning (e.g., KG-BERT [37]) have performedwell for certain kinds of
KGs, we cannot straightforwardly apply them in an open-world en-
vironment because they require the embedding of missing entities.
COMET (commonsense transformers) [4] presented an automatic
knowledge base construction from a seed KG by utilizing LLM.
Since COMET is trained to generate tail object tokens from a given
head entity and relation tokens, this method is categorized as a
“Fine-tuning” technique whereas our approach is categorized as
a “Prompting” technique that does not assume fine-tuning. Note
that our main research question is to clarify the impact of KG-
retrieval-based prompts for link prediction (the way of knowledge
utilization).

Some researchers have tackled the open-world environment by
using graph neural networks [8] or word embeddings [25]. How-
ever, such methods also require entity candidates with auxiliary
information to compute the posterior score of a fact. Hence, if we
cannot prepare the candidates in advance, or if they are too numer-
ous to calculate each score by enumerating facts, such methods are
not feasible.

As stated earlier, other approaches based on LLM for the open-
world environment are problematic in terms of unknown entity
prediction and prompt design. As for the prompt design, although
discrete or soft prompting is now widely utilized in the natural
language processing field, relatively few researchers have applied
it to the KGC problem. For example, there are manually designed
prompts based on a query for missing entities [22], prompts that
exploit external text data [26, 29], and soft prompts with fine-tuning
[20]. In addition, prompts based on multiple sub-tasks have been
utilized for the automatic construction of KG from seed entities [6].
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2 PRELIMINARIES
2.1 KGC in Open-world Environment
Let E𝑐 and R𝑐 denote a set of closed entities and relations, i.e.,
entities and relations that are present in the existing KG. Let also
E𝑜 ⊇ E𝑐 denote a set of open entities, which includes missing
unknown entities. We define an unknown entity as an entity that
does not appear in the triples or textual information of the KG. Note
that no list of unknown entities is available because literally no
information is given about them. The existing (given) KGs consist
of a set of facts G ⊂ (E𝑐 × R × E𝑐 ). Our objective is to find a
set of gold facts holding all the true facts, including the missing
facts denoted by G𝑔𝑜𝑙𝑑 ⊂ (E𝑜 × R × E𝑜 ). Note that G ⊂ G𝑔𝑜𝑙𝑑 .
Hence, KGC in an open environment is defined as finding facts
𝑥 ∈ G𝑔𝑜𝑙𝑑\G, and similarly, KGC in a closed-world environment
is defined as finding facts 𝑥 ∈ (E𝑐 × R × E𝑐 )\G. We assume that
all relations are known because the definition of relations is well
maintained thanks to the research area of ontology.

We formulate KGC as a link prediction task, i.e., predicting the
tail entity 𝑡 for a given missing fact (ℎ, 𝑟, ?) in G𝑔𝑜𝑙𝑑\G. Here, all
possible notions can be candidates of the tail entity in the open-
world environment. To clarify the problem setting, we assume
that the candidates can be represented by flexible text (character
sequences), not by a fixed label set or an embedding set.

Since entities indicating food names often consist of several noun
words, both of a single word and noun phrase including several
words can be candidates of a tail entity in our work. For example,
“seafood pizza” includes two words. This is the key advantage of our
link prediction method as compared to Petroni et al. [22], which
only predicted a single word/token entity.

2.2 Language Model for Text Generation
An autoregressive language model is usually formulated as con-
ditional probability 𝑝 (𝑤𝑙 |𝑤1, ...,𝑤𝑙−1) with token symbols𝑤𝑖 (𝑖 =
1, ..., 𝑙). This model calculates the probability that token𝑤𝑙 follows
input token sequence 𝑤1, ...,𝑤𝑙−1. Here, the token can be a word
or subword such as a sentence piece [14].

The output text (character sequence)𝑊 is generated from the
pre-trained LM by sampling in an autoregressive manner. For exam-
ple,𝑤∗

𝑙
is drawn from 𝑝 (𝑤𝑙 |𝑤∗

1 , ...,𝑤
∗
𝑙−1), and 𝑝 (𝑤𝑙+1 |𝑤∗

1 , .., .𝑤
∗
𝑙
) is

evaluated using𝑤∗
𝑙
to draw𝑤𝑙+1 until the number of drawn tokens

reaches a certain threshold or the “end of sentence” token, such as
[EOS], is sampled. Here, the symbol ∗ means an actual drawn token,
and the initial token 𝑤∗

1 is usually the “start of sentence” token
[SOS]. If the token is a word, the output text𝑊 is a concatenation
of the generated tokens [𝑤1, ...,𝑤𝐿] with length 𝐿. If the token is
a sentence-piece, the output text is recovered from the drawn to-
kens by a appropriate processing. In contrast to a bi-directional LM,
such as BERT [10] or RoBERTa [18], the autoregressive model can
generate tokens with various lengths. This generation scheme is
suitable for KGC in our usage scenario because entity candidates
may consist of several tokens.

Transformer-based neural LMs [33] (e.g., GPT [31]) are trained
with a massive amount of data: for example, the training data
for GPT-3 collected by web crawling exceeded 570 GB after pre-
processing. We therefore assume that LM has rich information

about missing unknown entity 𝑒 ∈ E𝑜\E𝑐 through training be-
cause massive training datasets include almost all the noun phrases,
especially well-known ones that can be prediction candidates.

GPT-2, 3, and 4 no longer require fine-tuning, and only prompts
(conditional sentences of LM) are required. For example, a prompt
might be “pizza - made from:” and the output is “cheese” [31]. To
improve the performance, the prompt is combined with a few ex-
amples such as “minestrone - made from: potatoes.” The input text
template or format utilized for the prompt usually affects the pre-
diction performance or the structure of the output text. As such,
both the text format and text content (information) used for the
prompt are important.

3 PROPOSED METHOD
In this section, we introduce our probabilistic generative model
based on LLM for link prediction and implementation based on
Monte Carlo sampling. We then explain our strategy for prompts
based on retrieving facts related with a given query in the given
KG to improve the prediction performance. Figure 2 presents an
overview of our proposed method consisting of KG-retrieval and
entity- sampling steps.

3.1 Probabilistic Formulation and Entity
Sampling via LLM

Our formulation of link prediction is based on the posterior prob-
ability 𝑝 (𝑡 |ℎ𝑇 , 𝑟 ,G) that represents the conditional probability of
𝑡 being the tail of a triple, given the head entity ℎ𝑇 , the relation
𝑟 , and the KG of G. This probability is utilized as the confidence
score. We assume the posterior probability is represented as the
following marginalized probability:

𝑝 (𝑡 |ℎ𝑇 , 𝑟 ,G) =
∑︁
𝑊

𝑝E (𝑡 |𝑊,G)𝑝LM (𝑊 |ℎ𝑇 , 𝑟 ,G), (1)

where𝑊 represents a latent text in terms of a probabilistic model
[5]. 𝑝LM (𝑊 |ℎ𝑇 , 𝑟 ,G) is a conditional probability of 𝑊 being the
latent text, given the head entity ℎ𝑇 , the relation 𝑟 and the KG
G, and 𝑝E (𝑡 |𝑊,G) represents a conditional probability of a tail
entity 𝑡 given the text𝑊 and the KG G. Here, 𝑝LM (𝑊 |ℎ𝑇 , 𝑟 ,G) is
implemented by LLM, and𝑊 corresponds to (recovered) tokens
𝑤𝑙 (𝑙 = 1, ..., 𝐿) generated from LLM. ℎ𝑇 , 𝑟 , and G in 𝑝LM corre-
spond to information for the prompt of LLM. Since G itself is too
large for prompting, it is replaced by a specific example 𝐸 in G,
i.e., 𝑝LM (𝑊 |ℎ𝑇 , 𝑟 , 𝐸). 𝑝E (𝑡 |𝑊,G) generally measures the similarity
between entity candidates 𝑡 and text𝑊 . It is also interpreted as an
entity generator using the given text𝑊 in the case of Monte Carlo
sampling. We can utilize the information of G in 𝑝E if necessary
(e.g., for entity identification or named entity recognition).

We evaluate the posterior probability using the Monte Carlo
method because a noun phrase (i.e., 𝑡 ) generally consists of two
or more words, which complicates defining it as a probability. The
latent text𝑊 is drawn from 𝑝LM, and 𝑡 is then drawn from 𝑝E given
the𝑊 . The posterior probability is approximated by normalizing
the frequency of the drawn samples. Note that this formulation can
be applied to any LLM and to approximate the posterior probability
of predicted entities.
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Figure 2: Overview of proposed method. Target fact (ℎ𝑇 , 𝑟 , ?) and 𝑛 examples {{(ℎ1, 𝑟 , 𝑡1,1), (ℎ1, 𝑟 , 𝑡1,2, ...)} , ..., {(ℎ𝑛, 𝑟 , 𝑡𝑛,1),
(ℎ𝑛, 𝑟 , 𝑡𝑛,2, ...)}}, related to ℎ𝑇 , are retrieved from KG by our algorithm. Obtained facts are then incorporated into a template
(lower left) from which output texts are repeatedly generated by LLM. Finally, the first noun phrase is extracted as predicted
fact (𝑡𝑎, 𝑡𝑏 , ...) and aggregated as 𝑝 (𝑡 |ℎ𝑇 , 𝑟 , 𝐸).

The details of each process are as follows. First, we repeatedly
generate text𝑊 by LLMwith an input character sentence (prompts)
using a template text filled with ℎ, 𝑟 , and example 𝐸 in the graph G.
(The details of the template and prompt strategy are described in
the next section.) Second, we estimate and extract the tail entity 𝑡
from the𝑊 . Here, we utilize the tendency that such a delimiter as
“,” appears with high probability after the noun phrase under our
heuristic prompt. This tendency is helpful for estimating entities
in the case of Japanese text because word segmentation method
or morphological analyzer is usually required to parse text. In this
case, 𝑝E (𝑡 |𝑊,G) works like a delta function 𝛿 (𝑡 − 𝑡 ′) with the first
noun phrase 𝑡 ′ in𝑊 . For example, if the output text is “mozzarella
cheese, tomato, basil, ...”, “mozzarella cheese” is the extracted noun
phrase, i.e., 𝑡 . Note that since a delimiter does not always appear,
this case remains a failure (no entity drawn).

3.2 Prompt based on KG-retrieval
Previous research has shown that using the appropriate prompts
improves the performance in many tasks [11]. For KGC, a straight-
forward approach to creating prompts is to give a total KG G as
a text, as mentioned earlier. This strategy is obviously infeasible
in terms of computational cost, and it will degrade the prediction
performance without LLM fine-tuning due to the inclusion of irrel-
evant facts in prompts. Therefore, we retrieve a small number of
examples relevant to the given query from KG and utilize them to
fill our template to construct prompts. The influence of irrelevant
facts on the link prediction performance will be discussed later.

Our prompt is based on the following two restrictions on exam-
ples considering the head entity ℎ𝑇 and the relation 𝑟 in a given
query.

(1) The relations for the examples are identical to the relation 𝑟 .
(2) The head entities for the examples are reached from the head

entity ℎ𝑇 in fewer hops in the KG.

The first restriction ensures relational consistency between exam-
ples and the query. We assume the relation set used in Wikidata. If
we use relations different from the target relation 𝑟 for the exam-
ples, prompts become ambiguous and the performance degrades.
For example, the relation 𝑟 of the query is “said to be the same as”
and one of the examples is “different from”. This is because the
relation “different from” can be applied to almost all entities in the
KG. The second restriction ensures entity’s relevance to the given
head entity ℎ𝑇 . Here, we assume that the relevance between the
entity ℎ𝑇 and the head entities of an example fact can be measured
by the hop length (distance), e.g., the number of relations (edges
in graph) in the shortest path connecting them. Therefore, “fewer
hops” means strong relevance with ℎ𝑇 .

Algorithm 1 shows FewerHopsEx, which samples examples with
fewer hops from KG, and Algorithm 2 shows RandEx, a sampling
algorithm without our second restriction, which we also utilized
for ablation study. Tails(𝑥, 𝑟,G) is a function that gives a set of
tail entities of the fact (𝑥, 𝑟, ?) in G, and kHopEntities(ℎ𝑇 , 𝑘,G)
is a function that gives entities reached from entity ℎ𝑇 in just 𝑘
undirected hops in the shortest path in G. | · | represents the number
of elements in the set. 𝑌 , which is the return value of Tails, is a
set of tail entities, i.e., {𝑦1, 𝑦2, ...} and (𝑥, 𝑟, 𝑌 ) form a set of facts
{(𝑥, 𝑟,𝑦1), (𝑥, 𝑟,𝑦2), ...}. Hence, 𝐸 is nested by example head entities.
Each algorithm obtains 𝑛 examples, including relation 𝑟 from G.
Specifically, FewerHopsEx gives examples with head entities that
were reached from a given ℎ𝑇 within𝑚 hops. If there are fewer
entities than 𝑛 in the𝑚 hops, we substitute examples sampled from
RandEx because they reduce the calculation cost, and entities with
many hops are no longer related toℎ𝑇 . Sampling(G) in RandEx is a
function that samples randomly from G. In line 4 of FewerHopsEx,
𝑥 is taken randomly from 𝑋 .

These sampled examples are utilized for the template filling
shown in the lower left of Fig. 2. In the template, “–” separates the
head entity and the relation, “:” separates the relation and the tail
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Algorithm 1 FewerHopsEx: Sampling facts for examples with
fewer hops
Require: ℎ𝑇 , 𝑟 , 𝑛,𝑚, G
1: 𝐸 = {𝜙 }
2: for 𝑘 = 1, ...𝑚 do
3: 𝑋 = kHopEntities(ℎ𝑇 , 𝑘, G)
4: for 𝑥 ∈ 𝑋 do
5: 𝑌 = Tails(𝑥, 𝑟, G)
6: if |𝑌 | ≠ 0 then
7: 𝐸 = 𝐸 ∪ {(𝑥, 𝑟,𝑌 ) }
8: end if
9: if |𝐸 | = 𝑛 then
10: return 𝐸

11: end if
12: end for
13: end for
14: 𝐸 = 𝐸 ∪ RandEx(𝑟, 𝑛 − |𝐸 |, G)
15: return 𝐸

Algorithm 2 RandEx:Sampling facts for examples by random sam-
pling
Require: 𝑟, 𝑛, G
1: 𝐸 = {𝜙 }
2: while |𝐸 | ≤ 𝑛 do
3: 𝑥 ∼ Sampling(G)
4: 𝑌 = Tails(𝑥, 𝑟, G)
5: if |𝑌 | ≠ 0 then
6: 𝐸 = 𝐸 ∪ (𝑥, 𝑟,𝑌 )
7: end if
8: end while
9: return 𝐸

entity, and each tail entity is separated by a comma. The new line
marker separates each fact. By using these specific symbols, gener-
ated text tends to be the same format of the template: the output
text𝑊 is also comma-separated, so parsing it to extract an entity
becomes easy. Note that there is a possibility that LLM may answer
the same words in the prompts. Therefore, to avoid trivial answers
that may degrade the link prediction accuracy, some restriction
sentences may be required in the prompt, for example, “don’t reuse
these words” to avoid trivial answers that may degrade link pre-
diction accuracy. In the evaluation of link prediction, the “known”
triples that may include entities in the prompts are excluded in the
“filtered setting”.

4 EXPERIMENT
We conducted experiments for both open- and closed-world envi-
ronments with a food subgraph of Japanese Wikidata and real facts
predicted by crowdworkers.

4.1 Dataset
We used a subgraph of Japanese Wikidata [34] related to food enti-
ties. In addition, we utilized crowdsourcing to collect ground-truth
data for real missing facts. The items in the food subgraph were

Table 1: Summary of dataset statistics. |E |, |R |, and |G| rep-
resent the number of entities, relations, and facts. FS, WD,
and CS represent the food subgraph, Wikidata, and crowd-
sourcing data. In the test dataset, “Closed” means that the
subset of the crowdsourcing data consists of entities included
in food subgraphs, and “Open” means that the whole set of
crowdsourcing data is included. Facts included in Wikidata
were removed from the crowdsourcing data.

Dataset |E | |R| |G|
- WD 2,414,044 969 13,584,645

Training FS 8,699 110 15,029

Test CS (Closed) 1,538 6 12,939
CS (Open) 7,187 6 27,177

used for example generation in the LLM prompts and as training
data for the baseline KGC methods, while the crowdsourcing data
were utilized as a test set. We focused on the six relations that
frequently appeared in the KG: “subclass of”, “has part”, “made from
material”, “has use”, “different from”, and “said to be the same as”.
Note that the relations between two food-related entities were al-
most always oen of these six. In the actual prompt, we used Japanse
translations of these names, e.g., “材料” for the relation “made
from material”.

For the food subgraph, we extracted seed entities that were
reached from the entity “food” within ten hops of “subclass of” as
a tail entity. In addition, we extracted the tail entities connected
with the extracted seed entities. Finally, the facts consisting of the
extracted head and tail entities were obtained. Almost all extracted
entities were food-related ones. For baselines that require training
or fine-tuning, we divided the food subgraph into training and
validation datasets at a ratio of 9:1.

We hired 201 crowdworkers and obtained 55,807 facts. The
crowdworkers were presented with the head entity ℎ, selected the
relation 𝑟 out of six, and filled the corresponding tail entity 𝑡 of (ℎ,
𝑟 , 𝑡 ) in Japanese. We had selected the ℎ from the entities of the food
subgraph with the top 1,000 hits in an Internet search to narrow
down popular (well-known) entities. This is because one of our
purposes is to provide the missing well-known facts in KG. Crowd-
workders could search the Internet if they did not know a head or
tail entity. Since our objective is to determine the distribution of
tail entities and the well-known entities, we feel that the influence
of noise responses and the agreement rate among workers are not
important for our experiments.

The statistics of our dataset are presented in Table 1.We extracted
8,699 entities, 110 relations, and 15,029 facts for the food subgraph
from Wikidata. After duplicated facts of crowdsourcing data were
removed, 7,187 entities and 27,177 facts remained. For the evaluation
described in the next section, we generated a closed-world subset
from the total crowdsourcing data, i.e., the subgraph consisting of
entities that appeared in the food subgraph. The subset included
1,538 entities and 12,939 facts. Figure 3 shows the relationships
between the entity sets of each dataset.

The tail entities of the crowdsourcing data utilized for the test
dataset and the predicted results of our method were susceptible
to notation inconsistency. In Japanese, some words have the same
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Figure 3: Venn diagram of entity set of each dataset.

meaning and the same reading but can have different notations, i.e.,
both “ジャガイモ” and “じゃがいも” mean “potato” and have the
same pronunciation. We therefore reduced the effect of notation
inconsistency by pronunciation matching, where we gave each
entity a pronunciation by MeCab [15] (a Japanese tokenizer) and
identified entities with an identical pronunciation.

4.2 Evaluation
We adopted Hits@𝑘 as an evaluation metric, which represents
the ratio of the true tail entity 𝑡 of (ℎ𝑇 , 𝑟 , ?) that is scored within
the top 𝑘 as the predicted entity 𝑡 . To more accurately evaluate
facts with many true tail entities, we excluded true facts in the
training, validation, and test datasets (except the target fact) from
the predicted entities (i.e., filtered setting), as in a previous work
[3].

First, we evaluated the performance of the closed-world environ-
ment to compare our proposed method with the baselines by using
closed-world test data constructed from the crowdsourcing data.
The closed-world test data included only the entities that appeared
in the food subgraph. For our proposed method, we removed the
predicted tail entities that do not exist in the food subgraph from
the prediction result.

We utilized the following methods as baselines for the closed-
world environment: KG-BERT [37], TransE [3], and ComplEx [32].
Here, TransE and KG-BERT were used as baselines of embedding-
based and pre-trained LLMmethods in [20]. We also set our method
without the examples as a baseline because it closely resembles
another method [22] except for the number of acceptable words
(single or multiple).

As for the open-world environment, we used all of the crowd-
sourcing data as test data. With this setting, we evaluated the over-
all performance, the number of entities in the food subgraph the
method can find, and the number of errors (i.e., prediction results
without any food). Note that the open-world test data included all
of the closed-world data.

4.3 Model Configuration
We used “japanese-gpt-1b1”, a GPT-2 based model with 1.3 billion
parameters trained with Japanese text data as an LM. The training
data were made from Japanese Wikipedia data, C4 [24], and CC-100
[7]. The number of hops𝑚 was set to 5, and the number of examples
𝑛 was examined from {1, 3, 5}. The text𝑊 was sampled 3,000 times
from LLM to approximate the posterior probability. As delimiters,

1https://huggingface.co/rinna/japanese-gpt-1b

Table 2: Average prediction performance in closed-world
environment: 𝑛 is the number of examples used in prompt.

Method Hits@10 Hits@1

Baseline
TransE 0.176 0.011
ComplEx 0.048 0.005
KG-BERT 0.198 0.030

Baseline
No Examples 0.321 0.091

(for ablation study)
RandEx (𝑛 = 1) 0.330 0.078
RandEx (𝑛 = 3) 0.383 0.118
RandEx (𝑛 = 5) 0.398 0.116

Proposed
FewerHopEx (𝑛 = 1) 0.399 0.112
FewerHopEx (𝑛 = 3) 0.426 0.127
FewerHopEx (𝑛 = 5) 0.446 0.136

we adopted commas, periods, dots, and brackets in the Japanese
and English notations.

The hyper parameters of the baselines were optimized with
Hits@10 scores of the validation dataset. The negative sampling ra-
tio of the embedding-based methods was from 1 to 5 for TransE and
ComplEx, and fixed at 5 for KG-BERT. The learning ratio for all the
models was 1.0 × 10−5. The embedding dimensions of TransE were
from 50 to 500 and of ComplEx were from 5 to 300. We used Japan-
ese BERT for KG-BERT(available on GitHub2). As an optimizer, we
adopted Adam [12] for TransE and ComplEx, and AdamW [19] for
KG-BERT.

4.4 Results
Table 2 shows the average Hits@𝑘 scores in the closed-world envi-
ronment for our proposed method and the baselines. As we can see,
our method outperformed the best of the baselines (KG-BERT) by
at least 0.10 for Hits@10, and FewerHopsEx outperformed RandEx
by 0.125 for Hits@10 and by 0.045 for Hits@1. In particular, Hits@𝑘

improved with more examples (𝑛 = 3, 5). Considering that the hop
length of RandEx was higher than that of FewerHopsEx, this re-
sult implies that entities with fewer hops to the target head entity
contained more information about the target head entity and thus
contributed to effective knowledge extraction from the pre-trained
LM.

Figure 4 shows the detailed relationship between Hit@10 and
the number of facts of the food subgraph that are available for
the training and predictions. We found relation-dependent perfor-
mance differences between our proposed method and the baselines,
especially for “made from material”. In particular, FewerHopsEx
with five examples outperformed KG-BERT for “made from mate-
rial” by 0.326. On the other hand, there was only a small difference
for “said to be the same as”. This result indicates that the perfor-
mance of our method was affected by the meaning of the relation.
The knowledge tended to be extracted from the LLM correctly for
relations in which the answer for (ℎ𝑇 , 𝑟 , ?) was clearly defined as
true or false, such as with “made from material”. In contrast, the
embedding-based method was less affected by the meaning of the
relations. Most of the tail entities of the examples with “has use”
sampled by RandEx were “food additives” and “ph adjuster”. This

2https://huggingface.co/cl-tohoku/bert-large-japanese
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Figure 4: Hits@10 and the number of facts of the food subgraph available for prediction by six relations. Left axis and bar
graph represent Hits@10, and right axis and black line graph represent the number of facts.

Table 3: Average prediction performance under open-world environment. 𝑛 is the number of examples used in prompt. The
right side of the table shows the ratio of the top 10 predicted entities included in the entity set of each dataset. FS, WD, and CS
represent the food subgraph, Wikidata, and crowdsourcing data. The relationships between entity sets follows that in Fig. 3.
“None” represents the ratio of the top 10 predicted entities not included in the entity set of any dataset.

Method Evaluation metrics Ratio of top 10 predicted entities included in dataset
Hits@10 Hits@1 FS WD CS CS \ FS None

Baseline
No Examples 0.155 0.032 0.434 0.685 0.593 0.169 0.234

(for ablation study)
RandEx (𝑛 = 1) 0.182 0.038 0.537 0.785 0.794 0.186 0.123
RandEx (𝑛 = 3) 0.218 0.059 0.671 0.807 0.842 0.194 0.095
RandEx (𝑛 = 5) 0.230 0.058 0.670 0.803 0.853 0.201 0.093

Proposed
FewerHopEx (𝑛 = 1) 0.219 0.054 0.647 0.785 0.812 0.192 0.114
FewerHopEx (𝑛 = 3) 0.240 0.062 0.689 0.814 0.838 0.181 0.093
FewerHopEx (𝑛 = 5) 0.251 0.066 0.715 0.823 0.857 0.174 0.080

implies that the randomly sampled examples might be irrelevant
to the target facts, especially for facts with relations that do not
impose a strong constraint on the predicted entities to be foods.
For example, when we predict the tail entity of “(pizza, made from,
?)”, the examples based on food additives will be noise, and the
generation probability of entities related with the food additives
will be enhanced due to the attention mechanism of LLM. As a
result, these examples obscured the KGC task and degraded the
performance.

Table 3 shows the average Hits@𝑘 in the open-world environ-
ment and the ratio of the top 10 predicted entities included in the
entity set of each dataset. Note that the relationships between the
entity sets follow those in Fig. 3. FewerHopsEx was the best for
both Hits@1 and Hits@10. “None” in Table 3 represents the ratio
of the top 10 predicted entities not included in any dataset, i.e., the
food subgraph, Wikidata, or crowdsourcing data. Most entities of
“None” were not foods or were foods with notational inconsistency.
We found that the predicted result with a higher number of ex-
amples tended to decrease the ratio of the predicted entities not
included in any dataset. This result implies that the prediction with
a higher number of examples about foods clarified KGC’s task for
the pre-trained LM and gave a constraint to output entities related
to foods to the LM. On the other hand, considering the entity subset

of the crowdsourcing data minus the food subgraph (i.e., CS \ FS)
as newly discovered food entities, RandHopsEx with five examples
was the best. In contrast, RandHopsEx with a large number of
examples degraded the ratio of CS \ FS.

Table 4 shows examples of a prompt, predicted tail entities, and
the true tail entity. We found that the prediction performance suf-
fered from notational inconsistency. For example, althoughキャベ
ツ (cabbage) andキャベツの葉 (cabbage leaves) are very close in
meaning, they were treated as different entities. As another exam-
ple,ピッツァ (pizza) means exactly the same things asピザ (pizza),
butピッツァ (pizza) did not appear in any dataset. These cases oc-
curred frequently and degraded the performance of the open-world
environment, which is a problem of the design of the entity ex-
tractor 𝑝E (𝑡 |𝑊,G). On the other hand, entities that were obviously
not foods were sometimes predicted, such as “ミケーレ (Michele)”,
but these entities were rarely among the top 10 predicted entities
included in the crowdsourcing data (Fig. 3). Therefore, efficient
named entity extraction from the output text and disambiguation
of extracted entities are both necessary functions to achieve an
effective 𝑝E.
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Table 4: Examples of a prompt, predicted tail entities and their score with FewerHopEx, and true tail entities. Italic font indicates
English translations.

Prompt Predicted tail entity: Score True tail entity
チキンライス -材料: キャベツ (cabbage): 0.679, キャベツの葉 (cabbage leaves),
ケチャップ，米，鶏肉 \n 玉ねぎ (onion): 0.056, 玉ねぎ (onion),
ロールキャベツ -材料: 鶏肉 (chicken): 0.051, 豚ひき肉 (minced pork)
chicken rice - made from material: 野菜 (vegetable): 0.040, ひき肉 (minced meat)
ketchup, rice, chicken \n じゃがいも (potato): 0.027, 肉 (meat),
cabbage roll - made from material: 米 (rice): 0.023, コンソメ (consommé)

.

.

.

乾パン -同一とされる事物: ピザ (pizza): 0.380, ナポリピッツァ (Neapolitan pizza)
ツヴィーバック \n ピッツァ (pizza): 0.072,
マルゲリータ -同一とされる事物: パン (bread): 0.044,
hardtack - said to be the same as: ツヴィーバック (zwieback): 0.037,
zwieback \n ミケーレ (Michele): 0.027,
Margherita - said to be the same as: ミケランジェロ (Michelangelo): 0.019,

.

.

.

4.5 Discussion and Limitations
Although we demonstrated the effectiveness of our model and
achieved retrieval-based prompts for LLM in link prediction, there
are some limitations in terms of the generalization of our method.
Note that our probabilistic formulation itself is general and the
concept can be applied to other settings.

The generalization ability is limited to the language (Japanese),
KG (food-domain), and LLM (GPT-2) used in our method. In particu-
lar, the typical graph structure of KG usually depends on its domain,
so it is important to clarify the relationship between the property
of KG and the performance of entity prediction. Evaluation using
different languages and LLMs is also important to characterize our
method because the construction of prompts is obviously affected
by the performance of the LLM and the design of 𝑝E (𝑡 |𝑊,G). Al-
though the format of our prompt is language-independent, the
notation of relations and entities are language-dependent, which
may affect the structure of text drawn from LLM. The modification
of noun phrase extraction process may be required in such case.
However, we can expect the performance of our link prediction
method to improve when the latest LLM is applied.

5 CONCLUSION
We proposed a probabilistic model using a pre-trained LLM with
prompts based on KG-retrieval for an open-world environment. Our
formulation can provide the posterior probability of a predicted
entity by assuming a latent text generated by LLM. We introduced
a prompt with example facts consisting of similar entities reached
from the target head entity within fewer hops. Both domain-specific
KG extracted fromWikidata and real facts predicted by crowdwork-
ers were utilized in our evaluation. Experimental results showed
that our retrieval-based prompts improved the KGC performance
and that real unknown entities were also accurately predicted by
our model.

Our future work will take two directions. First, we will cre-
ate more effective prompts by incorporating graph information
in a prompt-tuning method [17, 27]. Second, we will adopt an

embedding-based technique for the post-processing of our method.
By calculating the similarity of the predicted entity in the embed-
ding space, we should be able to reduce the notational inconsistency
caused in 𝑝E (𝑡 |𝑊,G) and simplify the combinations with other ap-
plications using KG embeddings [35].
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