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ABSTRACT
Despite their competitive performance on knowledge-intensive
tasks, large language models (LLMs) still have limitations in memo-
rizing all world knowledge especially long tail knowledge. In this
paper, we study the KG-augmented language model approach for
solving the knowledge graph question answering (KGQA) task
that requires rich world knowledge. Existing work has shown that
retrieving KG knowledge to enhance LLMs prompting can sig-
nificantly improve LLMs performance in KGQA. However, their
approaches lack a well-formed verbalization of KG knowledge, i.e.,
they ignore the gap between KG representations and textual repre-
sentations. To this end, we propose an answer-sensitive KG-to-Text
approach that can transform KG knowledge into well-textualized
statements most informative for KGQA. Based on this approach,
we propose a KG-to-Text enhanced LLMs framework for solving
the KGQA task. Experiments on several KGQA benchmarks show
that the proposed KG-to-Text augmented LLMs approach outper-
forms previous KG-augmented LLMs approaches regarding answer
accuracy and usefulness of knowledge statements.1

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natu-
ral language processing; Natural language generation.
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1 INTRODUCTION
Large language models (LLMs) are becoming increasingly popu-
lar in natural language processing for their superior competence
in various applications. Although LLMs demonstrate remarkable
capabilities in zero-shot scenarios, their performances on several
knowledge-intensive tasks are insufficiently satisfactory [21]. This
reveals the enormous parameters in LLMs cannot store all the
world’s knowledge. Several researches indicate that LLMs still suf-
fer from issues like hallucinations and factual inaccuracy when
answering questions [12, 18, 27]. Specifically, LLMs perform inade-
quately in the knowledge-intensive task KGQA [9, 35].

To solve this problem, recent work attempts to enhance LLMs
with external knowledge. A line of work [10, 20, 39, 42] involves con-
tinual pre-training LLMs on extensive corpora. Nevertheless, this
method requires a significant amount of textual data, computational
resources, and time investment. Considering knowledge graphs con-
tain a large amount of high-quality structured knowledge [43, 44],
prior efforts have sought to explicitly elevate the performance of
LLMs by extracting pertinent knowledge from them. Additionally,
alternative endeavors explore diverse knowledge reservoirs, includ-
ing web content and documentation [11, 14, 19]. This approach is
employed to address themodel’s deficiency in factual knowledge. In-
spired by this, other work [1, 33] constructs knowledge-augmented
prompt by prepending question-related factual information to the
question to enrich the knowledge of LLMs in a more direct fashion.
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Although this approach proves to be successful and cost-effective,
it ignores the importance of knowledge representation.

Figure 1: Two forms of knowledge representation: triple-
form text and free-form text. Triple-form text transforms
subgraph to text via simple linear concatenation while free-
form text adopts the KG-to-Text method to generate a seman-
tically coherent textual description.

In this paper, we summarize two knowledge representation for-
mats employed in previous work: triple-form text and free-form
text. As shown in Figure 1, triple-form text involves a simple linear
concatenation of triples, transforming them into structured text.
Free-form text converts triples into semantically coherent textual
descriptions based on the KG-to-Text method. Further, we propose
a KG-to-Text enhanced framework, Retrieve-Rewrite-Answer to
strengthen the performance of LLMs on KGQA. As shown in Fig-
ure 2, compared with previous work that answers questions in a
Retrieve-then-Answer fashion, our framework adopts a Rewriter
module to transform the retrieved triples into textual descriptions,
which is more conducive to the understanding of LLMs and is
more beneficial for KGQA. The core of this framework lies in the
task-driven KG-to-Text method. Our designed method is answer-
sensitive and can transform question-related triples into textual
knowledge which is most informative to KGQA. Compared with
previous work that simply adopts an off-the-shelf KG-to-Text model,
we fine-tune open-source LLMs on the KG-to-Text corpus to gen-
erate knowledge descriptions beneficial to KGQA. However, the
major challenge is the lack of KG-to-Text annotated data in existing
KGQA benchmarks. Therefore, we propose an automatic corpus
generation method for generating high-quality graph-text pairs
based on the feedback of LLMs.

The contributions of this paper are summarized as follows:

• Wepropose Retrieve-Rewrite-Answer, a KG-to-Text enhanced
LLMs framework for KGQA. In comparison to previous KG-
augmented LLMs frameworks, the most significant inno-
vation in our framework lies in the rewrite module. This
module uses fine-tuned LLMs as KG-to-Text models to con-
vert retrieved subgraphs into well-textualized statements
most informative for KGQA.

• To address the issue of scarcity of KG-to-Text corpus annota-
tions, we devise an automatic KG-to-Text corpus generation
method. We extract question-related subgraphs and utilize

Figure 2: Comparison between Retrieve-then-Answer frame-
work and our proposedRetrieve-Rewrite-Answer framework.
We use a rewriter module to transform the retrieved sub-
graphs into textual descriptions.

ChatGPT as a tool for corpus generation. Based on the feed-
back from question-answering LLMs, we generate answer-
sensitive knowledge descriptions for the construction of
KG-to-Text labeled data. We fine-tune several open-source
LLMs on the generated corpus and investigate the impact of
textual knowledge generated by different LLMs on KGQA.

• We evaluate our framework on four KGQA benchmarks. Ex-
perimental results show that our framework outperforms
previous KG-augmentedmethods across several LLMs, which
demonstrates its effectiveness. Besides, we investigate the
influence of different knowledge representation formats on
KGQA and prove that the knowledge produced by our frame-
work is most beneficial.

2 PRELIMINARIES
Knowledge Graph (KG) is a collection of triples (𝑠, 𝑟, 𝑜) composed
of subject 𝑠 , relation 𝑟 and object 𝑜 , denoted by 𝐺 = {(𝑠, 𝑟, 𝑜) |𝑠, 𝑜 ∈
𝐸, 𝑟 ∈ 𝑅}, where 𝐸 and 𝑅 denote the entity set and relation set.

KG-to-Text is a natural language generation technique based
on KG. Given a subgraph 𝐺 ′ = {(𝑠, 𝑟, 𝑜) |𝑠, 𝑜 ∈ 𝐸, 𝑟 ∈ 𝑅} from
KG 𝐺 , the objective of KG-to-Text is to generate a text sequence
𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) that is semantically coherent with subgraph𝐺 ′.

Knowledge Graph Question Answering (KGQA) is the task
of answering natural language questions based on a set of facts
over KGs. Given a question 𝑞 and a topic entity 𝑒ℎ , the task is to
generate an answer 𝑎 that can correctly respond to the question.

3 RELATEDWORK
3.1 KG-Augmented LLM for KGQA
Despite LLMs’ pre-training on massive corpora, they still suffer
from hallucinations, factual inaccuracy, and outdated knowledge
when it comes to KGQA. Recent efforts have aimed to harness
KGs to enhance the capabilities of LLMs on KGQA [1, 33]. In these
studies, question-related triples are extracted from KG and trans-
formed into textual format using techniques such as linear verbaliza-
tion or off-the-shelf KG-to-Text models. The textual representation
of triples and the question are transformed into the knowledge-
augmented prompt via predefined templates. The prompt is then fed
into the question-answering LLM to produce more reliable answers.
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While these studies demonstrate the effectiveness of this strategy,
they ignore the impact of the knowledge representation format
on the performance of LLMs on KGQA. In this study, we devise
a KG-to-Text corpus generation method to produce high-quality
annotations. Then we utilize LLMs fine-tuned on the corpus to
transform question-related subgraphs into knowledge text, which
can further elevate the performance of LLMs on KGQA.

3.2 KG-to-Text
Recent studies in KG-to-Text can be classified into two main ap-
proaches: 1) based on graph neural networks (GNNs) [41]: To
preserve the structural information of subgraphs during encod-
ing, researchers focus on designing more complex encoders to
obtain enhanced subgraph representation. Some work has devel-
oped graph-structured encoders based on GNNs [6, 22] due to the
robust capabilities of GNNs in encoding graph-structured data.
However, GNNs are restricted by local processing nature, as they
iteratively compute node representations based on neighboring
nodes’ features. To overcome this limitation, alternative efforts
have employed Transformer-based architecture [40] in designing
encoders [3, 15, 49]. This approach allows for the establishment of
connections between any two nodes within the graph, thereby ad-
dressing the limitations of GNNs. 2) based on pre-trained language
models (PLMs): With the development of large-scale generative
PLMs such as BART [17], T5 [25] and GPT [24], recent work applies
these models to KG-to-Text, modeling it as an end-to-end gener-
ation task [7, 13, 26]. These studies involve modifications to the
model architecture and the introduction of pre-training tasks to
enhance the ability to extract structural information. We follow the
second approach and fine-tune LLMs on the KG-to-Text corpus.

4 METHODS
4.1 Retrieve-Rewrite-Answer
As shown in Figure 3, our proposed Retrieve-Rewrite-Answer frame-
work contains three steps: subgraph retrieval, KG-to-Text, and
knowledge text enhanced reasoning.

4.1.1 Retrieve: Subgraph Retrieval. Our retrieve module consists
of three steps: hop prediction, relation path prediction, and triple
sampling, as illustrated in Figure 4.

Hop Prediction. The aim of this step is to predict the hop
number of the question, which is used to predict the relation path
in the next step. We model the hop prediction as a classification
task based on PLMs. Given the question 𝑞, we employ PLMs to
encode the question 𝑞 and obtain the vector representation 𝑞𝑣 :

𝑞𝑣 = 𝑃𝐿𝑀 (𝑞) (1)

The representation 𝑞𝑣 is then fed into the linear classification layer
to predict the probability distribution 𝐷′

ℎ
of potential hop numbers

ℎ1, ℎ2, ..., ℎ𝐻 :

𝐷′
ℎ
= [𝑑′

ℎ1
, 𝑑′

ℎ2
, ..., 𝑑′

ℎ𝐻
] = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑞𝑣) (2)

where𝑑′
ℎ𝑐

is the probability of the hop numberℎ𝑐 given the question
representation 𝑞𝑣 :

𝑑′
ℎ𝑐

= 𝑃 (ℎ𝑐 |𝑞𝑣), 𝑐 = 1, 2, ..., 𝐻 (3)

Figure 3: Our proposed framework, Retrieve-Rewrite-Answer
has three steps: subgraph retrieval, KG-to-Text, and knowl-
edge text enhanced reasoning.

The hop number ℎ with the highest probability is selected as the
predicted result.

ℎ = argmax
ℎ𝑐

𝑑′
ℎ𝑐
, 𝑐 = 1, 2, ..., 𝐻 (4)

During training, ground truth distribution 𝐷ℎ is represented as a
one-hot vector with a probability of 1 for the true hop number ℎ𝑔𝑜𝑙𝑑
and probabilities of 0 for other hop numbers:

𝐷ℎ = [𝑑ℎ1 , 𝑑ℎ2 , ..., 𝑑ℎ𝐻 ] (5)

𝑑ℎ𝑐 =

{
1, ℎ𝑐 = ℎ𝑔𝑜𝑙𝑑

0, ℎ𝑐 ≠ ℎ𝑔𝑜𝑙𝑑
𝑐 = 1, 2, ..., 𝐻 (6)

The predicted distribution 𝐷′
ℎ
is penalized for being different from

the ground truth distribution 𝐷ℎ using cross entropy loss 𝐿𝐶𝐸 :

𝐿𝐶𝐸 = −𝐷ℎ log𝐷′
ℎ
= −

𝐻∑︁
𝑐=1

𝑑ℎ𝑐 log𝑑
′
ℎ𝑐

(7)

𝐿𝐶𝐸 is utilized to update the model’s parameters.
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Figure 4: Our retrieve module consists of three steps: hop
prediction, relation path prediction, and triple sampling.

Relation Path Prediction. Given the question 𝑞 and the pre-
dicted hop number ℎ, we perform ℎ-step prediction, with each step
corresponding to one hop relation. At step 𝑡 , we predict the 𝑡-th
hop relation based on the predicted (𝑡 − 1) hop relation paths and
question 𝑞 via PLMs as a classification task. Specifically, for each
predicted relation path, we sample 𝐾 candidate relations for the
next step. In step 1, we encode the question 𝑞 into a vector represen-
tation 𝑞𝑣 . This vector is then passed through a linear classification
layer to compute the distribution 𝐷′

𝑟,1 of 𝑅 relations in KG:

𝐷′
𝑟,1 = [𝑑′𝑟1 , 𝑑

′
𝑟2 , ..., 𝑑

′
𝑟𝑅
] = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑞𝑣) (8)

where 𝑑′𝑟𝑐 is the probability of relation 𝑟𝑐 given the question repre-
sentation 𝑞𝑣 :

𝑑′𝑟𝑐 = 𝑃 (𝑟𝑐 |𝑞𝑣), 𝑐 = 1, 2, ..., 𝑅 (9)
We select top 𝐾 relations with the highest probabilities as one hop
relation paths 𝑝1.

In the following step 𝑡 (𝑡 > 1), the relation path 𝑝𝑡−1,𝑖 in the
(𝑡 − 1) hop relation paths 𝑝𝑡−1 can be represented as:

𝑝𝑡−1,𝑖 = 𝑟𝑖,1 |𝑟𝑖,2 |...|𝑟𝑖,𝑡−1, 𝑖 = 1, 2, ..., 𝐾𝑡−1 (10)

We concatenate the question 𝑞 and the relation path 𝑝𝑡−1,𝑖 with “|”
as the input sequence 𝑄𝑡 :

𝑄𝑡 = 𝑞 |𝑟𝑖,1 |𝑟𝑖,2 |...|𝑟𝑖,𝑡−1 (11)

𝑄𝑡 is encoded into vector representation 𝑄𝑡,𝑣 via PLMs and passes
through a linear classification layer to calculate the relation distri-
bution 𝐷′

𝑟,𝑡 across 𝑅 relations in KG:

𝑄𝑡,𝑣 = 𝑃𝐿𝑀 (𝑄𝑡 ) (12)

𝐷′
𝑟,𝑡 = [𝑑′𝑟1 , 𝑑

′
𝑟2 , ..., 𝑑

′
𝑟𝑅
] = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑄𝑡,𝑣) (13)

where 𝑑′𝑟𝑐 is the probability of relation 𝑟𝑐 given the input sequence
representation 𝑄𝑡,𝑣 :

𝑑′𝑟𝑐 = 𝑃 (𝑟𝑐 |𝑄𝑡,𝑣), 𝑐 = 1, 2, ..., 𝑅 (14)

We retain top 𝐾 relations with the highest probabilities as the 𝑡-th
hop relations for the (𝑡 − 1) hop relation path 𝑝𝑡−1,𝑖 .

After ℎ-step prediction, we can obtain 𝐾ℎ relation paths. The
score of the relation path 𝑝𝑡,𝑖 is the product of the probabilities of
all relations in the path:

𝑆𝑐𝑜𝑟𝑒 (𝑝𝑡,𝑖 ) = 𝑆𝑐𝑜𝑟𝑒 (𝑟𝑖,1 |𝑟𝑖,2 |...|𝑟𝑖,𝑡 ) =
𝑡∏

𝑙=1
𝑑′𝑟𝑖,𝑙 , 𝑖 = 1, 2, ..., 𝐾ℎ (15)

We employ a training method similar to hop prediction. For ques-
tion 𝑞 and the ground truth relation path, we concatenate question
𝑞 and (𝑡 − 1) hop relation path as the inputs𝑄𝑡−1. We encode𝑄𝑡−1
into vector representation and feed it into linear classification layer
to obtain the 𝑡-th hop relation distribution 𝐷′

𝑟,𝑡 . The ground truth
distribution 𝐷𝑟,𝑡 is represented as a one-hot vector with a probabil-
ity of 1 for the true 𝑡-th hop relation and a probability of 0 for other
relations. We use cross-entropy loss for parameter optimization.

Triple Sampling. We arrange the predicted relation paths in
descending order of scores and sequentially sample reasoning paths
composed of triples from KG until the number of reasoning paths
reaches𝑀 . These reasoning paths are utilized as the relevant knowl-
edge to augment LLMs on KGQA.

4.1.2 Rewrite: KG-to-Text. The core of our rewrite module is to
transform structured triples into free-form text based on a KG-to-
Text model. We start by training an open-source LLM based on
question-related graph-text pairs. Given the graph 𝐺 and corre-
sponding free-form text 𝑦. We verbalize the triples in graph 𝐺 into
triple-form text 𝑥 by concatenating the subject, relation, and object.
Then, we transform triple-form text 𝑥 to graph-to-text transfor-
mation prompt 𝑝1 via a template 𝑇1:“Your task is to transform a
knowledge graph to a sentence or multiple sentences. The knowledge
graph is: {triple-form text 𝑥 }. The sentence is:”. We take prompt 𝑝1
and free-form text 𝑦 as the input and output respectively and adopt
the teacher forcing strategy in training. Formally, given the prompt
𝑝1, ground truth output sequence 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑇 ] and model
vocabulary [𝑣1, 𝑣2, ..., 𝑣𝑉 ], the model predicts the probability distri-
bution 𝐷′

𝑣,𝑡 of tokens at step 𝑡 based on prompt 𝑝1 and previous
(𝑡 − 1) steps correct tokens 𝑦1, 𝑦2, ..., 𝑦𝑡−1:

𝐷′
𝑣,𝑡 = [𝑑′𝑣1 , 𝑑

′
𝑣2 , ..., 𝑑

′
𝑣𝑉
] (16)

where 𝑑′𝑣𝑐 is the probability of 𝑣𝑐 given 𝑝1 and 𝑦1, 𝑦2, ..., 𝑦𝑡−1:

𝑑′𝑣𝑐 = 𝑃 (𝑣𝑐 |𝑝1, 𝑦1, 𝑦2, ..., 𝑦𝑡−1), 𝑐 = 1, 2, ...,𝑉 (17)

Ground truth distribution𝐷𝑣,𝑡 is a one-hot vector with a probability
of 1 for the true next token𝑦𝑡 and probabilities of 0 for other tokens:

𝐷𝑣,𝑡 = [𝑑𝑣1 , 𝑑𝑣2 , ..., 𝑑𝑣𝑉 ] (18)

𝑑𝑣𝑐 =

{
1, 𝑣𝑐 = 𝑦𝑡

0, 𝑣𝑐 ≠ 𝑦𝑡
𝑐 = 1, 2, ...,𝑉 (19)

The cross entropy loss 𝐿𝐶𝐸 is used to update the parameters:

𝐽𝑡 = −𝐷𝑣,𝑡 log𝐷′
𝑣,𝑡 = −

𝑉∑︁
𝑐=1

𝑑𝑣,𝑐 log𝑑′𝑣,𝑐 (20)
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Figure 5: Our designed KG-to-Text corpus generationmethod
has three steps: subgraph extraction, text generation, and
quality evaluation.

𝐿𝐶𝐸 =
1
𝑇

𝑇∑︁
𝑡=1

𝐽𝑡 (21)

While answering questions, each reasoning path is first lin-
earized into triple-form text and then transformed into a prompt
via template 𝑇 1. The prompt is fed into the fine-tuned LLMs to ob-
tain the corresponding textual description. These descriptions are
consolidated into a paragraph as the question-relevant knowledge
to enhance the performance of the LLMs.

4.1.3 Answer: Knowledge Text Enhanced Reasoning. To integrate
the generated knowledge𝑦with the question𝑞, we devise a template
𝑇 2:“Below are the facts that might be relevant to answer the question:
{free-form text 𝑦} Question: {question 𝑞} Answer:”. We map the free-
form text 𝑦 and the question 𝑞 to KG-augmented prompt 𝑝2 using
template𝑇 2. Then we input prompt 𝑝2 into the question-answering
model and collect output as the predicted answer 𝑎.

4.2 Corpus Generation
Existing KGQA benchmarks do not provide graph-text pairs for the
question-answering task. Therefore, we design a KGQA task-driven
corpus generation method. Considering ChatGPT’s powerful natu-
ral language understanding and generation capabilities, inspired by
[5, 16, 23], we adopt ChatGPT as the corpus generator. As shown
in Figure 5, this process contains three steps: subgraph extraction,
text generation, and quality evaluation.

4.2.1 Subgraph Extraction. For KGQA benchmarks that provide
relation paths or reasoning triples (e.g. MetaQA [47], PathQuestion
[48]), we obtain subgraphs by querying KG based on annotations.
For benchmarks annotated with SPARQL (e.g. WebQuestionSP [45],
ComplexWebQuestion [34]), we modify SPARQL query to retrieve
intermediate entities and construct question-related subgraphs.

4.2.2 Text Generation. Given the question 𝑞, we first verbalize the
related subgraph 𝐺 into triple-form text 𝑥 by concatenating the
subject, relation, and object. Then, template 𝑇 1 is adopted to trans-
form triple-form text 𝑥 to graph-to-text transformation prompt 𝑝1.
Finally, we input prompt 𝑝1 into ChatGPT to obtain the correspond-
ing free-form text 𝑦.

4.2.3 Quality Evaluation. Due to the absence of annotations, com-
mon evaluation metrics including BLEU, METEOR, and ROUGE
cannot be employed. Considering the purpose of the generated text
is to strengthen the performance of LLMs on KGQA, we assess the
quality of free-form text 𝑦 based on the feedback from question-
answering models. We map the free-form text 𝑦 and question 𝑞 to
KG-augmented prompt 𝑝2 via template 𝑇 2. Then, we feed prompt
𝑝2 to the question-answering model and get the predicted answer
𝑎. In light of the fact that LLMs typically provide textual passages
as responses instead of single answer entities, we employ hit@1 as
a metric to assess the correctness of answer 𝑎. To put it simply, if
answer 𝑎 contains at least one answer entity, the question is consid-
ered answered correctly. In this scenario, we collect the triple-form
text 𝑥 and free-form text 𝑦 as a graph-text pair.

5 EXPERIMENTS
5.1 Datasets
MetaQA [47] is a large-scale multi-hop KGQA benchmark in the
movie domain. It provides a knowledge graph including 135k triples,
43k entities, and 9 relations. It contains more than 400k questions
divided into MetaQA 1-hop, MetaQA 2-hop, and MetaQA 3-hop
based on the hop number of the question. Each question is anno-
tated with the head entity, answers, and entity categories involved
in the reasoning path. In this experiment, we choose MetaQA 2-hop
as our benchmark and the“vanilla” version of the questions, totaling
148,724 questions (118,980 train, 14,872 dev, 14,872 test). We collect
the gold relation paths based on the provided entity categories since
there is only one type of relation between two categories of entities.

WebQuestionsSP (WebQSP) [45] is a smaller scale KGQA
benchmark with a larger scale KG. It provides SPARQL queries
for WebQuestions [2] and filters out questions that are not answer-
able. The remaining 4,737 questions (3,098 train, 1,639 test) are
either 1-hop or 2-hop questions with corresponding topic entities,
inferential chains, and SPARQL queries. Following [31], we prune
the KG to contain only relations mentioned in the questions and
the triples within 2 hops of mentioned entities. The pruned KG
includes 1.8 million entities, 627 relations, and 5.7 million triples.

WebQuestions (WebQ) [2] collects questions from web pages
via Google Suggest API. Following [33], we use a subset of this
benchmark. Our method requires annotations for relation paths
or SPARQL queries, which are not provided. Therefore, we choose
the questions that are provided with SPARQL queries in WebQSP
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Table 1: Experimental results of our proposed framework and baselines on WebQSP/WebQ, where we report hit@1(%). We
implement our KG-to-Text model based on Llama-2-chat (13B). The results of the baselines are copied from the original paper.
The best score is emphasized in bold.

Method WebQSP WebQ
T5(0.8𝐵) T5(3𝐵) T5(11𝐵) T0(3𝐵) T0(11𝐵) Flan-T5(80𝑀 ) Flan-T5(3𝐵) Flan-T5(11𝐵) T0(3𝐵) T0(11𝐵)

KAPING 34.70 25.41 24.91 52.28 62.85 - - - - -
Sen et al. - - - - - 45.52 55.58 59.79 53.33 55.64
Ours 69.41 72.11 79.36 74.02 68.55 59.95 68.92 73.71 74.02 68.55

for training and testing. This results in 4,737 questions (3,098 train,
1,639 test). We use the same KG as WebQSP.

ZhejiangQA (ZJQA) is a Chinese KGQA dataset of 20,491 ques-
tions provided by Zhejiang Lab. We divide these questions into
trainset, devset, and testset (14,999 train, 2,147 dev, 3,345 test). The
questions are either 1-hop or 2-hop questions primarily in the
robotic domains. Each question is provided with a head entity, an-
swers, and a gold relation path. It also provides a KG with more
than 11k triples, 9k entities, and 39 relations.

5.2 Large Language Models
Our proposed framework has two modules based on LLMs: KG-to-
Text and question-answering. We use Llama-2 (7B, 13B), Flan-T5
(3B) for KG-to-Text and Llama-2 (7B, 13B), T5 (0.8B, 3B, 11B), Flan-
T5 (80M, 3B, 11B), T0 (3B, 11B), ChatGPT for question-answering.

Llama-2 [38] is an updated version of Llama-1 [37], which is
trained on a wide range of public online data sources. Among
different variants, we adopt Llama-2-chat (7B, 13B) as our KG-to-
Text and question-answering model. For ZJQA, we employ the
Chinese version of this model, Chinese-Alpaca-2 (7B, 13B)2.

T5 [25] is an encoder-decoder model pre-trained on multiple
tasks in a text-to-text format. Following [1], we use the LM-adapted
version3 of T5 as the question-answering model on WebQSP.

Flan-T5 [4] is an extension of T5, which is further instruction
tuned on a large-scale collection of automatically generated instruc-
tions from existing datasets. We use Flan-T5-XL (3B) as KG-to-Text
model for MetaQA and Flan-T5-Small (80M), Flan-T5-XL (3B), Flan-
T5-XXL (11B) as question-answering models for WebQ. We do not
use this model for ZJQA since it does not support Chinese.

T0 [29] is fine-tuned from T5 over a variety of prompts to im-
prove zero-shot generalization performance. We use T0 (3B, 11B) as
the question-answering model to compare our proposed framework
with previous work on WebQSP and WebQ.

ChatGPT4 is a large language model built on GPT-3.5 developed
by OpenAI. It is pre-trained on enormous corpus and human anno-
tations and excels in understanding and generating human-like text.
Specifically, we use GPT-3.5 Turbo in this experiment. We cannot
fine-tune ChatGPT since it is not yet open source. Therefore, we
access it via API5 and use it as the question-answering model.

2https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
3https://github.com/google-research/text-to-text-transfer-
transformer/blob/main/released_checkpoints.md
4https://openai.com/blog/chatgpt
5https://api.openai.com/

5.3 Baselines
We compare the proposed framework with previous KG-augmented
LLM methods for KGQA on WebQSP and WebQ:

KAPING [1] verbalizes triples by concatenating subject, rela-
tion, and object. During the retrieval process, verbalized triples and
questions are embedded into vector space with an off-the-shelf sen-
tence embedding model. The vector similarity between questions
and verbalized triples is calculated to retrieve triples as augmented
knowledge. The retrieved triples and questions are concatenated in
the form of the prompt and fed into the question-answering model
to obtain answers. We compare with this baseline on WebQSP.

Sen et al. [33] improves the retrieval method of KAPING [1].
This work utilizes Rigel [28] to predict the distribution over re-
lations for each hop and retrieve triples based on the calculated
relation distribution and question entities. The retrieved triples are
linear verbalized and concatenated with the question via prompt
and input into the question-answering model to generate the an-
swer. We compare with this baseline on WebQ.

5.4 Evaluation Metrics
Following the evaluation settings in previous work on generative
KGQA[30, 32, 46], we use hit@1, which measures whether the
generated answer includes at least one answer entity. Both the pre-
dicted answers and the answer entities are converted to lowercase
to mitigate matching issues arising from letter-case differences.

5.5 Implementation Details
WebQSP/WebQWe parse the SPARQL query to extract the gold
relation path for each question. Bert-base-uncased is used as the
classification model for hop prediction and relation path prediction.
We modify the SPARQL query and obtain intermediate entities to
construct the gold subgraph for each question. All the questions in
train split are used for corpus generation. Over 12k graph-text pairs
are generated and utilized for supervised fine-tuning. In addition,
we exclude 11 test samples without answers.

MetaQA We skip the hop prediction step and use the provided
ground truth hop number. Bert-base-uncased is used as the classifi-
cation model for relation path prediction. We randomly sample 17k
questions from train split for corpus generation and generate more
than 13k graph-text pairs for KG-to-Text fine-tuning.

ZJQA We use bert-base-chinese for hop prediction and relation
path prediction. We randomly sample 14k questions from train split
for corpus generation and obtain over 13k KG-to-Text annotations.

For WebQSP and WebQ, we set K=5 (i.e. sample 5 relations as the
next possible relations for each predicted relation path) andM=5 (i.e.
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Table 2: Experimental results of different knowledge representation formats on MetaQA and ZJQA, where we report hit@1(%).
The below section of the table is the results of our framework implemented by different KG-to-Text models. The number inside
the parentheses behind the LLMs denotes its parameter size. The best score for each question-answering model is emphasized
in bold.

Knowledge Format MetaQA ZJQA
Llama-2-chat(7𝐵) Llama-2-chat(13𝐵) ChatGPT Llama-2-chat(7𝐵) Llama-2-chat(13𝐵) ChatGPT

No Knowledge 34.31 34.08 60.58 14.95 15.75 15.25
Triple Knowledge 96.98 96.78 93.19 88.67 84.48 92.02
MTL Knowledge 86.32 87.18 80.66 - - -
MVP Knowledge 96.13 98.04 92.91 - - -
Flan-T5(3𝐵) 97.60 98.78 97.71 - - -
Llama-2-chat(7𝐵) 97.74 98.92 97.69 93.09 93.21 92.91
Llama-2-chat(13𝐵) 97.77 99.07 97.63 91.48 92.11 92.11

sample up to 5 reasoning paths for each question) in the subgraph
retrieval process. For MetaQA and ZJQA, we set K=3 and M=5.
ChatGPT is used as the question-answering model in the corpus
generation for all benchmarks. Our framework is implemented
using Pytorch6, Transformers7 and Peft libaries8. We train KG-to-
Text models on 4 NVIDIA Tesla V100 GPUs for 10 epochs adopting
LoRA [8] and run inference over KG-to-Text models and question-
answering models on 1 NVIDIA Tesla V100 GPU.

5.6 Main Results
Table 1 shows the overall results of our proposed framework and
baselines on WebQSP and WebQ. Our KG-to-Text model is imple-
mented based on Llama-2-chat (13B). For the question-answering
model, we choose T5 (0.8B, 3B, 11B), T0 (3B, 11B) and Flan-T5 (80M,
3B, 11B), T0 (3B, 11B) as question-answering models on WebQSP
and WebQ respectively. Experimental results demonstrate that our
framework outperforms baselines by a large margin across vari-
ous LLMs. Notably, it exhibits the most significant advantages on
T5. This suggests that T5, which is pre-trained solely on textual
data, may have limitations in comprehending structured data. This
proves that transforming triple-form text into free-form text can
enable LLMs to better understand the provided factual knowledge
and enhance their capabilities on KGQA.

5.7 Ablation Study
We conduct a comparative analysis of different knowledge repre-
sentation formats and implement our framework utilizing a range
of LLMs on MetaQA and ZJQA datasets. This ablation study is
performed to investigate the impact of knowledge representation
formats and LLMs on KGQA.

Specifically, we use Llama-2-chat (7B, 13B), Flan-T5-XL (3B) as
the KG-to-Text model and Llama-2-chat (7B, 13B), ChatGPT as the
question-answering model. We compare knowledge generated by
our framework with no knowledge, triple knowledge, and knowl-
edge generated by the off-the-shelf KG-to-Text model:

No Knowledge Questions are directly fed into LLMs without
additional knowledge. We set this knowledge representation format

6https://pytorch.org/
7https://huggingface.co/docs/transformers/main/index
8https://huggingface.co/docs/peft/index

to explore how much improvement KG-augmented methods can
bring to LLMs on KGQA.

Triple Knowledge Triple knowledge is the most common strat-
egy used in previous work. We first deduplicate the retrieved triples
to mitigate semantic redundancy and then simply verbalize each
triple by concatenating the subject, relation, and object.

MVP Knowledge To verify the effectiveness of the fine-tuning
process, we choose MVP [36] as the off-the-shelf KG-to-Text model.
MVP is a text-generation LLM that is first pre-trained on 77 datasets
over 11 diverse natural language generation (NLG) tasks in a super-
vised text-to-text format and then further pre-trained task-specific
soft prompts to enhance the model’s ability on specific tasks. We
use MVP-data-to-text, a variant of MVP which is pre-trained on
labeled data-to-text datasets to perform KG-to-Text in the zero-shot
scenarios. We do not use this knowledge representation format for
ZJQA since MVP does not support Chinese.

MTLKnowledgeWe select MTL-data-to-text as another off-the-
shelf KG-to-Text model. This model is a different variant of MVP
and is pre-trained on a mixture of labeled data-to-text datasets.
However, compared with MVP-data-to-text, it lacks training on
other NLG tasks and task-specific soft prompts pre-training. We do
not use this model for ZJQA due to its lack of support for Chinese.

Table 2 shows the experimental results of different knowledge
representation formats based on various LLMs as the question-
answering models. Compared with other knowledge representation
formats, knowledge generated by our framework shows further
improvement across multiple LLMs on KGQA.

5.8 Analysis
Impact of Knowledge Representation Formats Table 2 demon-
strates that different representations of the same retrieved triples
have a significant influence on KGQA. The above section of Table 2
shows the results of the baseline representation formats.Without in-
corporating external knowledge, the performance is the worst. This
indicates that LLMs are incapable of storing all factual knowledge
within their vast parameters. Other KG-augmented LLM methods
outperform this baseline by a large margin, demonstrating the ef-
fectiveness of incorporating KG knowledge relevant to questions.
Among them, MTL knowledge exhibits the smallest improvement.
This is because MTL is only pre-trained on multiple data-to-text
datasets and its natural language understanding and generation
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Table 3: The detailed comparison results over no knowledge and triple knowledge. The below section of the table is the results
of our framework implemented by different KG-to-Text models. We adopt Llama-2-chat (13B) as the question-answering model.
The best score is emphasized in bold.

Knowledge Format No Knowledge Baseline Triple Knowledge Baseline
Helpful ↑ Harmful ↓ Helpful ↑ Harmful ↓

Triple Knowledge 9,428 103 - -
MTL Knowledge 8,201 303 334 1,761
MVP Knowledge 9,583 70 443 255
Flan-T5(3𝐵) 9,672 49 453 155
Llama-2-chat(7𝐵) 9,690 46 456 137
Llama-2-chat(13𝐵) 9,703 38 459 119

capabilities are not strong enough. Therefore, the transformation
from subgraphs to text loses semantic information and leads to
limited enhancement. MVP-generated knowledge and triple-form
knowledge result in comparable results. The reason is that MVP
is pre-trained on multiple NLG tasks and further fine-tuned on
data-to-text datasets, possessing stronger capabilities in text com-
prehension and generation compared to MTL. Nevertheless, it lacks
fine-tuning on domain-specific KG-to-Text corpus, leading to simi-
lar results as triplet knowledge. Triple-form knowledge is the most
common approach in previous work. However, experimental results
show that LLMs still struggle to extract semantics effectively from
triples. This suggests that LLMs prefer receiving textual knowledge,
as they have been pre-trained on massive corpora and structured
triples are just a part of it. The below section of Table 2 shows
results of our framework. Our framework employs multiple KG-to-
Text models, surpassing all baselines on various question-answering
models. This not only demonstrates that our KG-to-Text method can
generate answer-sensitive textual knowledge but also highlights
the robust applicability of our framework to mainstream LLMs.

Impact of LLMs The below section of Table 2 illustrates differ-
ent performances of our proposed framework based on different
LLMs. Generally, Llama-2-chat is better at KG-to-Text compared
with Flan-T5-XL. We speculate this disparity can be attributed to
differences inmodel parameters. The smaller size of Flan-T5-XL (3B)
compared to Llama-2-chat (7B, 13B) may be responsible for the in-
ferior performance. The two-parameter versions of Llama perform
comparably. We believe this is due to the relative simplicity of KG-
to-Text compared to other NLG tasks and 7B parameters are enough.
For question-answering models, Llama-2-chat (13B) achieves the
best performance on MetaQA while ChatGPT demonstrates the
poorest performance. It is noteworthy that ChatGPT outperforms
Llama-2-chat (7B, 13B) when no knowledge is provided. This ob-
servation indicates that ChatGPT has a greater capacity to retain
knowledge due to its significantly larger parameter size. However,
it does not leverage relevant knowledge as effectively as Llama-2-
chat. For ZJQA, we employ the Chinese version of Llama-2-chat,
Chinese-Alpaca-2. It is further trained based on Llama-2 using a
substantial Chinese corpus and instruction data. Despite having
significantly different model parameters, it achieves performance
on ZJQA that matches or even surpasses ChatGPT. This emphasizes
the significance of continued pre-training. Chinese-Alpaca-2 (13B)
excels in almost all knowledge representation formats but lags be-
hind ChatGPT in triple-form knowledge. Apart from differences

in model parameters, we posit this is because ChatGPT has been
trained on a wider range of structured data, enabling it to extract
semantic information from structured data more effectively.

Helpfulness/Harmfulness of Generated KnowledgeWe fur-
ther analyze the experimental results of MetaQA to investigate
the positive and negative impact of knowledge generated by dif-
ferent methods on question-answering models. We establish two
baselines: “no knowledge” and “triple knowledge”, and compare
other knowledge formats with these two baselines. We count the
number of questions where the baseline answers incorrectly but
other knowledge formats answer correctly (i.e., helpful), as well
as the number of questions where the baseline answers correctly
but other knowledge formats answer incorrectly (i.e., harmful). We
choose Llama-2-chat (13B) as the question-answering model. The
detailed information is presented in Table 3.

The comparison with no knowledge baseline indicates knowl-
edge representation format employed in our framework can better
assist LLMs on KGQA and has fewer adverse effects. Besides, results
on the triple knowledge baseline reveal that our KG-to-Text method
can generate the most informative textual statements for KGQA.
This highlights the necessity of fine-tuning KG-to-Text models.

6 CONCLUSION
In this paper, we propose Retrieve-Rewrite-Answer, a KG-to-Text
enhanced LLMs framework for KGQA. Our framework adopts an
answer-sensitive KG-to-Text method to generate textual knowl-
edge which is most informative for KGQA. To address the chal-
lenge of missing annotation data of KG-to-Text, we design a KG-to-
Text corpus generation method based on the feedback of question-
answeringmodels. Experimental results demonstrate that our frame-
work outperforms previous KG-augmented methods by a large
margin. However, this framework requires fine-tuning KG-to-Text
models on graph-to-text corpus and does not incorporate extra data
sources besides KG. In future work, we plan to explore integrating
additional knowledge resources and design an approach capable of
generating question-related knowledge in zero-shot scenarios.
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