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ABSTRACT
Automated terminology extraction (ATE) aims to identify domain-
specific specialized terms in textual data, providing crucial support
for constructing knowledge graphs and facilitating information
retrieval[1]. With the proliferation of text in emerging domains
and the maturity of domain-specific term extraction frameworks,
there is a growing interest in improving cross-domain model per-
formance through transfer learning. However, due to the lack of
high-quality labelled data in emerging domains and disparities in
data distribution and domain-specific information, traditional ATE
faces challenges in achieving generalization and domain adapta-
tion when transitioning from source domains to target domains. To
address this challenge, we introduce a Cross-Domain Neural Topic
Model (dubbed CNTM) that employs a domain training-adaptation-
inference paradigm. Specifically, this paradigm enables CNTM to
adapt to specific features in the target domain while leveraging
source domain knowledge to enhance performance. The approach
involves training the model on data-rich source domain data, fine-
tuning it with limited target data, and extracting domain-specific
terminology from low-resource target text. Additionally, we in-
troduce the Neural Topic Model (NTM) to enhance the model’s
capacity to identify commonalities across domains, thereby improv-
ing cross-domain generalization capabilities. Furthermore, CNTM
leverages the robust representation capabilities of pre-trained lan-
guage models and the discriminative optimization of the contrastive
learning module to achieve precise term extraction, especially in a
few resource scenarios. Extensive experiments on four real-world
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datasets across various domains with different sizes and term de-
scription sources validate the efficacy and resilience of CNTM in
terms of overall performance.
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1 INTRODUCTION
Term Extraction (TE) plays a crucial role in deepening our under-
standing of specialized domain knowledge, providing invaluable in-
put for various Natural Language Processing (NLP) applications[2–
5], such as information retrieval, thesaurus construction, question
answering, and machine translation. Faced with the frequent emer-
gence of new terms in rapidly evolving domains, traditional term
extraction models typically rely on domain-specific corpora and
rules, making it challenging for them to generalize to new domains
or cross-domain applications. Meanwhile, emerging domains often
lack sufficient quantity and quality of annotated data, making it
more difficult to build high-performance TE models.

To address this challenge, a large number of previous studies have
focused on the task of transfer learning[6–8], where the knowledge
and features learned by the model in one domain are transferred
and adapted to another domain. This shows that even in the case
of low resource scenarios, existing domain knowledge can be effec-
tively leveraged to enhance term extraction performance in new do-
mains. For example, Zhang[7] explores the potential of fine-tuning
pre-trained BERT models for Automatic Term Extraction across
diverse domains and languages. Hanh[9] conducts a comprehen-
sive study on Transformers-based pre-trained language models for
multi-language, cross-domain automatic term extraction, demon-
strating the superiority of monolingual models and the benefits of
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ensemble strategies. These approaches leverage the generalization
capabilities of PLM across multiple languages and domains, thereby
enhancing term extraction performance in emerging domains.

Traditional PLM are typically trained on large-scale generic cor-
pora, excelling at capturing general semantic information. How-
ever, this can lead to a decrease in performance when dealing with
domain-specific terms, especially in emerging domains with lim-
ited annotated data, as they lack domain-specific knowledge and
struggle to identify unique information across different domains.
Terms from different domains may possess distinct meanings and
contexts, making it challenging for pre-trained models to accurately
capture and classify these terms. For example, "heart attack" has a
clinical meaning related to cardiovascular health in medicine, while
in the automotive field, it refers to an engine suddenly stopping.
Traditional pre-trained language models may struggle to distin-
guish between these meanings due to their lack of domain-specific
knowledge and context, leading to potential misinterpretations.

To address these challenges, we propose a comprehensive ap-
proach, CNTM for terminology extraction, which comprises three
main stages: domain training, domain adaptation, and domain in-
ference. During the domain training phase, we leverage a richly
labeled source dataset to provide a pre-trained architecture for text
in the target domain. This architecture includes an input module,
an encoding module, a topic-enhanced encoding module, and a
decoding module. These modules collaborate to capture the in-
tricate relationships between terms and their context, ensuring a
comprehensive representation of terminology within the domain.
The whole process provides the basis for the subsequent stages of
domain adaptation and domain reasoning.

In the domain adaptation stage, we employ limited annotated
data from the target domain to fine-tune CNTM, thereby enhanc-
ing its adaptation to the distinctive characteristics of the target
domain. This approach helps mitigate the challenge of transferring
information between different domains, as the model can undergo
parameter adjustments to align more effectively with the data dis-
tribution of the target domain. The adaptation also involves the use
of an early stopping strategy to control gradient propagation and
prevent overfitting. Additionally, a topic enhancement process is
employed to capture semantic information from the target domain’s
documents. The domain inference phase utilizes the neural network
model trained in the domain training and adaptation phases to per-
form terminology inference on unlabeled data in the target domain.
This involves calculating the distance between domain-specific de-
scriptors and individual words in input documents to assess domain
relevance, ultimately achieving cross-domain term extraction tasks.

In summary, CNTM provides a comprehensive solution for cross-
domain terminology extraction, offering valuable support in ad-
dressing the challenge of weak information transferability. By lever-
aging pre-trained models, contrastive learning, and a neural topic
module, these integrated techniques significantly enhance the accu-
racy of term extraction, particularly in scenarios characterized by
emerging domains and limited annotated data. A series of compre-
hensive experiments conducted on four real-world datasets span-
ning various domains provides strong evidence for the robustness
and effectiveness of CNTM.

2 RELATEDWORK
2.1 Neural topic model
Recently, the Neural Topic Model has emerged as a prominent
research area, attracting significant attention in the fields of text
mining and natural language processing. While traditional topic
models like Latent Dirichlet Allocation (LDA) [10] have made com-
mendable progress in text topic modeling, they often face challenges
in capturing intricate semantics and implicit information embedded
within textual content. The Neural Topic Model (NTM) harnesses
the integration of neural networks into topic modeling, enabling
more effective learning of semantic representations and underlying
topics from extensive textual datasets. NTM’s potential to unveil
intricate topic structures and decode latent semantic structures has
attracted researchers exploring its applicability across diverse do-
mains [7, 11]. By combining neural networks with topic modeling,
NTM provides a pathway to extract deeper insights from textual
data, contributing to advancements in various natural language
understanding tasks. Zhao [12] proposed a method for learning
document topic distribution representations by directly minimizing
the optimal distance between document-to-document word distri-
butions. Wang [13] introduced the Layer-Assisted Neural Topic
Model (LANTM), which enhances the encoding capability of topic
representations by connecting text content with auxiliary networks.
Yang [14] presented TopNet, a method that utilizes recent advances
in neural topic modeling to generate high-quality backbone words,
addressing the limitations of short inputs. Gupta [15] proposed a
neural topic modeling framework that utilizes a multi-view em-
bedding space, incorporating pre-trained topic embeddings and
word embeddings, which not only better handles polysemy but
also enhances the quality of obtained topics. While continuous
advancements in neural topic modeling have been made, existing
work has not fully harnessed the rich information conveyed by
input documents. We introduce a topic-enhancement module to
amplify the abundant thematic semantic information correspond-
ing to the original input documents. Simultaneously, we leverage
a pre-trained language model based on contrastive learning and
prompt learning to acquire comprehensive label information for
term labels, thereby effectively enhancing the domain adaptation
capability of term extraction tasks.

2.2 Automatic term extraction
In recent years, the field of term extraction algorithms has under-
gone a significant transformation, transitioning from manual ex-
traction to automated methods. Manual extraction heavily relies on
domain experts and their specialized knowledge, which can be labor-
intensive and inefficient. In the realm of automated term extraction,
the initial focus was primarily on the intrinsic characteristics of
terms and shallow linguistic analysis based on their frequency in
target corpora.Methods in this early stage of development can be
broadly categorized into three main approaches: linguistics-based,
statistics-based, and hybrid approaches that combine linguistic and
statistical elements.Linguistics-based approaches in term extraction
are primarily centered around leveraging manually constructed lin-
guistic rules to facilitate the automatic extraction of terms. For
instance, researchers like Bourigault[16] employ part-of-speech
tagging to annotate documents within a given corpus. Based on a
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Figure 1: The overall framework of CNTM, which consists of three main components: domain training, domain adaptation,
and domain inference. Domain training uses labeled data from the source domain, while domain adaptation and inference
utilize limited labeled data from the target domain for fine-tuning and term inference.

pre-existing set of standard terms, they utilize finite-state annotate
(FSM) to automatically deduce a collection of rules implicit within
the documents. Frantzi[17]were among the pioneers to amalgamate
linguistic and statistical methods in term extraction. They intro-
duced the C-value method, which initially selects candidate terms
based on certain rules and subsequently employs statistical criteria
to filter these candidate terms.

With the continuous advancement of machine learning and deep
learning, an increasing number of cutting-edge technologies have
been applied to term extraction tasks. Automatic terminology ex-
traction is mostly based on methods including statistical analysis,
semantic relationships, machine learning, and rule formulation.
For expamele, vivaldi[18] introduced an external knowledge base,
Wikipedia, into the terminology extraction task to enrich semantic
information. Yang[19] introduced an adaptive unsupervised cluster-
ing algorithm that enhances the algorithm’s robustness and stability
by utilizing noisy data to construct pseudo-terms for training and
incorporating fault tolerance mechanisms. CoAKT[20] uses deep
learning to reduce the dependence of traditional artificial feature
engineering methods. AutoPhrase[21] employs distant supervision
techniques and phrase segmentation guided by part-of-speech tag-
ging, effectively avoiding the need for additional manual labeling
efforts and enhancing the effectiveness of terminology extraction.
Hazem[22] proposed a BERT-based approach for terminology ex-
traction, achieving favorable experimental results on multilingual
datasets. Tran[9] and Hazem[23] employed pre-trained models to
automatically extract terms across domains from low-resource data.
They achieved cross-lingual and cross-domain transfer learning by
pre-training on the source language and fine-tuning on the target
language.

While pre-trained language models trained on extensive corpora
have demonstrated remarkable accuracy and recall in term extrac-
tion, they encounter challenges in cross-domain term extraction
tasks, particularly in nascent domains with limited labeled data.
Prominent challenges involve the limited capacity to effectively
transfer information across domains and the intricacy of identify-
ing distinctive elements amid diverse domains. To address these
issues, the subsequent term extraction framework introduces the
topic information derived from the neural topic model into the
pre-trained language model, thereby increasing the information
extraction ability of the model.

3 PROBLEM DEFINITION
We adhere to the established named entity recognition BIO annota-
tion format (Lample et al., 2016), where ’B’ indicates the beginning
of a term, “I" represents an intermediate term, and “O" signifies non-
term entities. Each token 𝑥𝑖 in a specific input text𝑋 = {𝑥1, ..., 𝑥𝑡 } is
assigned a label𝑦𝑖 ∈ 𝐶 , where𝐶 denotes a predefined set of domain-
specific term labels. Our datasets consist of a source domain training
set with abundant labeled data (𝐻 ) and a low-resource target do-
main dataset (𝑇 ), which is a union of sparsely labeled samples (𝑆)
and an unlabeled target domain test set (𝐿).

4 METHOD
The overall framework of the neural topic model-based terminol-
ogy extraction method is depicted in Figure 1. Firstly, the domain
training phase involves training the neural network on a substantial
amount of labeled domain-specific data, thereby enabling the model
to learn a representation that adapts to the distinctive features of
the domain’s data. Secondly, the purpose of domain adaptation is
to fine-tune model parameters using a limited amount of samples,
aiming to enhance the model’s adaptation to specific domain data
characteristics. Finally, domain inference is performed on domain-
specific datasets with limited annotations, applying the learned
model to extract term information from unlabeled data. Throughout
these three phases, we leverage pre-trained topic vectors to enhance
semantic information within the datasets, improving cross-domain
term recognition. Then we will provide a detailed elaboration of
these three stages.

4.1 Domain training phase
During the domain training phase, the model is trained on a source
dataset with rich labels, thus providing a pre-trained architecture
for texts in the target domain. The specific model architecture, as
illustrated in Figure 2, mainly comprises input Module Based on
Prompt Learning, encoding Module based on contrastive learning,
a topic-enhanced encoding module, and a decoding module based
on BiLSTM and CRF.

4.1.1 Knowlegable context construction. The prompt-based input
module aims to fully exploit the rich semantic information inherent
in texts to represent domain-specific term labels. For instance, given
a specfic input sentence “[BOS] A Taxonomy of Cyber Attacks on
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第四章 基于神经主题模型的术语抽取方法

目标数据集分属于两个不同的术语领域，其中领域适应的目的是采用少量的样本进行参
数微调，而领域推断则是在少标注的领域数据集上执行术语推断任务。在术语抽取的三
个阶段中，均引入了预训练的主题向量，通过主题向量的引入，充分利用数据集本身及
对应文档所蕴含的丰富语义信息，从而弥补源数据集和目标数据集术语标签语义信息匮
乏和目标数据集标注数据少的问题，进而提升模型跨领域术语识别的性能表现。

��� 领域训练阶段

在领域训练阶段，需要在一个富标签的源数据集上进行训练，从而为跨领域的术语
抽取模型提供预训练模型。领域训练阶段的模型架构如图���所示，主要包含了基于提
示学习的输入改造模块，基于对比学习的语言模型编码模块，基于主题增强的编码模块
以及基于 %L�/670和 &5)的解码模块。

图 ���领域训练阶段的模型结构

����� 基于提示学习的输入改造模块

基于提示学习（SURPSW）的输入改造模块旨在充分利用自然语言中包含的丰富语义
信息来代表特定领域的术语标签。举例来说，对于原始的输入语句“>%26@ $ 7D[RQRP\
RI &\EHU $WWDFNV RQ �* 1HWZRUNV >(26@”，可以在其后接入这个语句对应的领域提示信
息，如“7HFKQRORJ\ QRQH”，其中“7HFKQRORJ\”代表相应语句对应科技术语领域的术
语标签表述，而“QRQH”则代表对应语句中不是科技领域术语的单词，也可以认为是原
始 %,2标注对应的 2类单词。由此可见，为了能够充分的利用提示信息，需要首先针
对特定的领域数据集构建任务对应的提示，定义一个用于将术语标签和领域描述相映射

��

Figure 2: Model Structure in Domain training phase

3G Networks [EOS]". We can utilize predefined prompt template
“Technology none", “Technology none" indicates a technology domain
term, and “none" signifies non-terms. Alternatively, "none" can also
be interpreted as an O-class word in the original BIO annotation,
representing non-term entities. This approach associates input text
with domain information and helps label non-term words using
prompt templates. To optimally leverage the prompt information,
the construction of task-specific prompts tailored to specific domain
datasets is necessary.

Hence, we denote the set of prompts as𝑀 , which associates term
labels with domain descriptions. Each word 𝑣𝑖 used for describing
domain information can be obtained through the mapping𝑀 and
the corresponding domain label 𝑦𝑖 ∈ 𝐶 , where 𝐶 represents the
predefined set of term domain labels. This study employs a simple
yet effective approach to customize such a mapping set 𝑀 . For
instance, for a specific domain term label like "Tech," intuitively
using "Technology" as the domain description prompt is chosen,
i.e., 𝑀 (Tech) = T echnology. The design of prompts is usually
customized for a specific term or domain. This type of prompts in-
herently contains general semantic information and context related
to the corresponding term domain and helps mitigate the bias of
limited labeled data.

For the term extraction task, the term domain labels are ini-
tially mapped to domain description information. Subsequently,
the generated prompt information is concatenated with the in-
put document 𝑋 , resulting in an extended input sequence 𝑋 ′ =

{𝑥1, 𝑥2, ..., 𝑥𝑡 , 𝑣1, 𝑣2}. Here, 𝑡 represents the length of the original
input document, 𝑣1 signifies the domain-specific label, and 𝑣2 repre-
sents “none”, denoting non-domain terms. The input text 𝑋 ′ is fed
through a pre-trained language model 𝑔(.) to obtain corresponding
latent vector representations. The final hidden layer outputs serve
as the representations of each word, as shown in Equation 1:

𝐻 = [ℎ1, . . . , ℎ𝑡 , ℎ′1, ℎ′2] = 𝑔( [𝑥1, . . . , 𝑥𝑡 , 𝑣1, 𝑣2]) (1)

4.1.2 Domain Training through Contrastive Learning. In order to
enhance the model’s cross-domain learning capabilities and im-
prove its adaptation to diverse semantic information across various
domains, we introduce the optimization concept of contrastive
learning. The goal of this module is to minimize the distance be-
tween the input text 𝑋 and its corresponding domain-specific term
description, while simultaneously maximizing the distance between

irrelevant domain-specific term descriptions. This strategy is de-
signed to effectively capture the relationship between words and
domain labels, ensuring that the model can precisely differentiate
terms across various domains.

Specifically, each positive pair is defined as (𝑥𝑝 , 𝑣𝑝 ), where 𝑣𝑝
denotes the corresponding domain term description. On the other
hand, each negative pair is formed by combining 𝑥𝑝 with unrelated
domain term description from the prompt information. Thus, the
contrastive loss for word 𝑥𝑝 is given by Equation 2.

ℓ
(
𝑥𝑝

)
= − log

exp
(
−𝑑

(
h𝑝 , h′𝑝

)
/𝜏
)

∑2
𝑞=1 exp

(
−𝑑

(
h𝑝 , h′𝑞

)
/𝜏
) (2)

Where 𝜏 represents the temperature hyperparameter, we employ
the Euclidean distance to measure similarity of vectors, as shown
in Equation 3.

𝑑

(
h𝑝 , h′𝑞

)
=

h𝑝 − h′𝑞
2

2
(3)

The loss function based on contrastive learning can be defined as
in Equation 4.

Lcon =
1
|X|

∑︁
𝑥𝑖 ∈X

ℓ (𝑥𝑖 ) (4)

Where Xrepresents the collection of documents.

4.1.3 Topic Enhancement Module. The key distinction between TE
tasks and NER lies in the fact that the latter can identify multiple cat-
egories of fine-grained instance, providing richer and more diverse
label semantics. Conversely, the descriptions in TE task is generally
consistent and unique. Compared to the finer-grained label infor-
mation in named entity recognition, term extraction tasks typically
involve coarser-grained domain labels. To harness the semantic
richness in domain-specific dataset documents and mitigate label
scarcity in term extraction tasks, we introduce a topic-enhanced
encoding module to enhance semantic space encoding.

Specifically, we employ a neural topic model based on mutual
information[24] to obtain high-quality latent representations for
each input document. These topic representations effectively cap-
ture the semantic information of the original input documents and
can be utilized for text reconstruction. For a given input document
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𝑋 = {𝑥1, ..., 𝑥𝑡 }, its latent vector representation after being pro-
cessed by a pre-trained languagemodel is denoted as 𝐸 = {𝑒1, ..., 𝑒𝑡 },
and the corresponding topic vector representation is denoted as
𝑍 = {𝑧1, ..𝑧𝑖 }, where 𝑖 represents the predefined number of topics.

P = 𝑍 ⊕ 𝐸 (5)

Concatenating the elements from E and Z yields P, which provides
the decoding module with highly representative and reconstructive
feature vectors.

4.1.4 DecodingModule and Training Objectives. The decodingmod-
ule primarily decodes the comprehensive encoding vector 𝑃 to ob-
tain the predicted labels. Subsequently, the predicted label is derived
by calculating the cross-entropy loss between the input document
and the output document. Specifically, we employ Bi-LSTM and
CRF as the decoding module, with 𝑃 serving as input to the de-
coder to produce an output vector 𝑄 . The dimension of 𝑄 is 𝑡 ×𝑚,
where 𝑡 signifies the number of words in the input document, and
𝑚 represents the count of labels. In this context, 𝑄𝑖 𝑗 represents the
probability associated with the 𝑗th label for the 𝑖th word in the
input document. For a predicted sequence 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑡 }, its
probability is formulated as depicted in Equation 6:

𝑓 (𝑋,𝑦) =
𝑡∑︁
𝑖=0

𝐴𝑦𝑖𝑦𝑖+1 +
𝑡∑︁
𝑖=1

𝑄𝑖,𝑦𝑖 (6)

The matrix𝐴 represents the transition matrix, with𝐴𝑖 𝑗 denoting
the probability of transitioning from label 𝑖 to label 𝑗 . Here, 𝑦0 and
𝑦𝑡 correspond to the starting and ending tags for the predicted
sequence, respectively. The probability of generating the label se-
quence 𝑦 based on the original input sentence 𝑋 is mathematically
represented by Equation 7:

𝑝 (𝑦 | 𝑋 ) = e𝑓 (𝑋,𝑦)∑
�̃�∈𝑌𝑋 𝑓 (𝑋,𝑦) (7)

Where 𝑦 represents the true label. We employ the cross-entropy
loss function to maximize the likelihood probability of the accurate
label sequence, as illustrated by Equation 8:

Lentropy = − log(𝑝 (𝑦 | 𝑋 )) = 𝑓 (𝑋,𝑦) − log ©«
∑︁
�̃�∈𝑌𝑋

e𝑓 (𝑋,𝑦)ª®¬ (8)

Where 𝑌𝑋 represents all possible label sequences corresponding to
an input sequence 𝑋 . Finally, the objective function can be viewed
as a fusion of the contrastive learning loss function and the cross-
entropy loss function, as depicted in Equation 9:

L = 𝜔 ∗ Lcon + (1 − 𝜔) ∗ Lentropy (9)

It can be observed that the domain traing phase encompasses an
input module based on prompt learning, Domain Training through
contrastive learning, a topic enhancement module, and decoder
modules.

4.2 Domain Adaptation
The domain adaptation phase aims to fine-tune the model trained
on the source domain using a small amount of labeled data from
the target domain, enabling cross-domain term inference tasks. The
model structure of the domain adaptation phase is similar to that

of the domain adaptation phase, with most modules resembling
those from the domain training phase. Furthermore, to enhance
the model’s domain adaptation capability for different label spaces,
we have improved the topic-enhanced module during the domain
adaptation phase. This enhancement aims to fully leverage the
rich semantic information present in the unlabeled target domain
dataset.

In the term extraction task, the primary distinction between
the target domain and the source domain lies in the variation of
term labels. Given that each dataset corresponds to a specific doc-
ument within the domain, the domain-specific descriptions and
domain labels used in hint learning vary. To enhance the model’s
domain adaptation capability, we fine-tune a pre-trained neural
network model that has been trained in the source domain using
a small amount of annotated data from the target domain. In this
process, we use an early stopping strategy[25] to control the degree
of gradient propagation, which works by monitoring the model’s
performance on the validation data set during training and stopping
the training process when performance starts to decline. This indi-
cates that the model has started to overfit the training data, thereby
preventing overfitting and improving the model’s generalization.

4.2.1 Topic Enhancement based on ElasticSearch. When dealing
with text data associated with a specific domain, the textual in-
formation related to the target domain usually contains diverse
semantic details that can effectively capture the essence of domain-
specific terms. Additionally, these meticulously structured and
constrained vocabularies often demonstrate a notable extent of
word overlap. Motivated by the insights from reference[26], we
employ an approach in which the provided text functions as a
query, aiming to retrieve the most analogous samples from the
target domain’s database. In this study, we leveraged the exist-
ing Elasticsearch[27]retrieval engine and employed the efficient
BM25[28] retrieval method. We constructed an Elasticsearch in-
dex using the built-in standard analyzer, specifically tailored for
large-scale unlabeled domain corpora. This index enables real-time
retrieval of the top K samples based on the BM25 scores computed
from the input text. Subsequently, the top K samples with the closest
similarity are extracted for further topic enhancement. Specifically,
we perform a weighted average of the pre-trained topic vectors
corresponding to these documents,resulting in an average topic vec-
tor that corresponds to the original input document. This process
serves to enhance the semantic information encapsulated within
the original input document.

4.3 Domain Inference Phase
The purpose of domain inference is to utilize the neural network
model trained during the domain training and domain adaptation
phases. This aims to perform terminology inference on a large
volume of unlabeled data in the target domain, determiningwhether
the input document contains specific terms from the domain. The
model structure is illustrated in Figure 3.

We calculate the distance between domain-specific descriptors
and each individual word to assess the domain relevance of words.
For the input documents in the test set 𝐿test, they are fed into the
pre-trained language model to obtain their corresponding latent
vector representations, as shown in Equation 10:
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第四章 基于神经主题模型的术语抽取方法

给定文本作为查询并检索具有文本相似性度量的特定领域数据库来为给定文本绘制相
关样本。本文利用现成的检索引擎 (ODVWLFVHDUFK>��@ 实现了高效的 %0��>��@ 检索器。对
于干净的大规模域内未标记语料库，主要通过内置的标准分析器创建 (ODVWLFVHDUFK索引，
进而可以近乎实时地通过输入文本的%0��分数检索 WRSK个样本。在完成 (ODVWLFVHDUFK
索引之后，进而提取相似度最接近的 WRS K 个样本进行主题增强。具体而言，将这些文
档所对应的预训练主题向量进行加权平均，从而得到原始输入文档对应的平均主题向
量，以此丰富原始输入文档所蕴含的语义信息。

����� 基于少量目标领域标注数据的适应过程

在术语抽取任务中，目标领域和源领域最大的区别在于术语标签的不同，由于每一
个数据集都对应着特定领域的相关文档，为此用来形容特定领域的领域描述信息及提示
学习中的领域标签不尽相同。为了能够提升模型的领域迁移能力，让原先在源领域训练
好的神经网络能够适用于目标领域的数据分布，需要采用少量的目标领域标注数据进行
领域适应。在实现过程中，本文采用 >��@ 提到的提前停止标准来实现目标领域的梯度传
播，从而对神经网络的参数进行更新，避免过度适应的问题。

��� 领域推断阶段

领域推断的目的在于利用领域训练和领域适应阶段训练好的神经网络模型，针对目
标领域上的大量无标注数据进行术语推断，从而判断输入文档中是否含有特定领域内的
术语，模型结构如图���所示。在领域推断阶段，提示学习中的领域描述信息将被当作

图 ���领域推断阶段的模型结构

是度量指标来计算与每个单词之间的距离。具体而言，对于测试集中的输入文档 Ltest，

��

Figure 3: Model Structure in the Domain Inference Phase

𝐿test =
[
h1, . . . , h𝑡 , h′1, h

′
2
]

(10)
For each word 𝑥𝑖 in the input document, we find the closest anchor
embedding and assign its corresponding domain label information
𝑐 𝑗 to the respective word token, as shown in Equation 11.

𝑦test𝑖 = argmin
𝑐 𝑗

h𝑖 − h′𝑗
2

2
(11)

Whereℎ𝑖 ,ℎ′𝑗 represents the latent representation of word,domain
label, respecially. In the process of term inference, the Viterbi algo-
rithm is still used to predict the output sequence with the largest
score, so as to obtain the BIO prediction sequence representation
corresponding to the input document, as shown in Equation 12:

𝑦∗ = arg�̃�∈𝑌𝑋 max 𝑓 (𝑋,𝑦) (12)
The final term inference results can be obtained through the

integration of distance-based contrastive learning predictions and
probability predictions based on Viterbi decoding, thereby achiev-
ing cross-domain term extraction tasks.

5 EXPERIMENT
5.1 Experiment Set
Dataset. To provide a comprehensive evaluation of the perfor-
mance of the TNE for cross-domain term extraction tasks, we con-
ducts experiments on four real-world datasets. Table 1 provides
statistics for each dataset, including the number of documents,
average document length, and the count of standard terms.

ACLVer2: This dataset comprises abstracts from 300 articles
in the field of computer science, sourced from the Association for
Computational Linguistics (ACL) index publications.

GENIA: The GENIA dataset is designed for semantic annotation
in biomedical text mining, consisting of 2,000 abstracts covering
various domains in biomedicine, such as human biology, blood cells,
and transcription factors.

TTCM: Comprising 37 articles focused on mobile technology,
this dataset was constructed by web scraping and includes a man-
ually filtered "standard terminology list," making it a valuable re-
source for research and analysis in the field.

TTCW: This collection of 103 articles, centered around wind
energy, offers invaluable data concerning wind turbine performance
and environmental conditions.

Table 1: Terminology Extraction Statistics for the Four
Datasets

Dataset #Terms Average Document Length #Documents

ACL 3059 736 300
GENIA 33396 1498 2000
TTCM 255 55652 37
TTCW 288 49737 103

5.2 Baseline Models
To evaluate the practical effectiveness of our framework, we com-
pare our model with the most prominent methods:

• ComboBasic[29] is a terminology extraction algorithm,
places its primary focus on evaluating the frequency of can-
didate terms in documents and analyzing their contextual
relationships. Additionally, it utilizes domain-specific vocab-
ularies and incorporates multi-positional features to effec-
tively filter out irrelevant terms.

• TermExtractor[30] is a graph-based terminology extraction
algorithm that builds a co-occurrence matrix and a corre-
sponding weighted graph through the fusion of textual data.
The edges within the weighted graph signify co-occurrence
associations between candidate terms, enabling the extrac-
tion of domain-specific terms through graph analysis.

• CoAKT[20] is an automatic key term extraction method
based on deep learning that operates without explicit fea-
tures. Its goal is to decrease reliance on traditional feature en-
gineering methods through deep learning techniques, lever-
aging a large-scale corpus for training. By employing unsu-
pervised learning, it enhances the representational capac-
ity of text features, ultimately reducing the time and effort
needed for manual feature construction.

• TTE[31] is a multi-language terminology extraction model
based on Transformers. It employs multiple Transformer lay-
ers to extract latent text features and utilizes self-attention
mechanisms to capture relationships among words. Further-
more, the model incorporates an innovative filtering mecha-
nism for efficient candidate term selection.

• BERT-biLSTM-CRF[23] is a cross-domain terminology ex-
traction model. Based on BERT, it captures shared contextual
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Table 2: Performance of Domain Terminology Extraction

Method ACL GENIA TTCM TTCW
Pre Rec Pre Rec Pre Rec Pre Rec

ComboBasic 0.15 0.11 0.52 0.09 0.27 0.34 0.36 0.64
TermExtractor 0.23 0.15 0.41 0.10 0.23 0.17 0.20 0.32
CoAKT 0.38 0.19 0.57 0.15 0.43 0.38 0.47 0.58
TTE 0.42 0.40 0.60 0.45 0.53 0.51 0.61 0.52
BERT-biLSTM-CRF 0.51 0.43 0.63 0.41 0.52 0.42 0.63 0.54
TNE 0.53 0.50 0.65 0.52 0.58 0.45 0.67 0.56

information for terms across domains and languages. Lever-
aging BERT, this model conducts cross-language and cross-
domain transfer learning, resulting in enhanced extraction
of both single-word and multi-word terms. This approach
significantly improves the efficiency of term extraction.

5.3 Evaluation Metrics
Term extraction models typically extract candidate terms from
domain-specific corpora as output. This study employs the complete
term list obtained from the corpus as the ground truth. Evaluation
of model-generated candidate terms is performed using Precision,
Recall, and F1-score.

• Precision(Pre) is calculated by determining the proportion
of correctly extracted terms among all candidate terms pre-
dicted by the model, as Equation 13.

Precision =
True Positives

True Positives + False Positives
(13)

• Recall(Rec) is calculated by determining the proportion of
correctly extracted terms among all standard terms within
the domain corpus, as Equation 14.

Recall =
True Positives

True Positives + False Negatives
(14)

• F1-score(F1) is obtained by computing the harmonic mean
of precision and recall, providing a comprehensive assess-
ment of the term extraction model’s performance, as Equa-
tion 15.

F1-score =
2 · Precision · Recall
Precision + Recall

(15)

5.4 Implementation Details
Hyperparameters for ComboBasic, TermExtractor, CoAKT, TTE,
and BERT-biLSTM-CRF were configured based on the optimal set-
tings outlined in their respective works. The ratios of domain train-
ing, domain adaptation, and domain inference in the same domain
dataset are set to 8:1:1, respectively. During model training, a learn-
ing rate of 10−4 was employed in conjunction with the Adam opti-
mizer across all datasets. The 𝜔 parameter in the overarching loss
function described in Equation 4.8 was empirically set to 𝜔 = 0.4.
All experiments consisted of 100 training epochs and employed
a batch size of 128. In the content of cross-domain term extrac-
tion, this paper employed 1-shot and 5-shot settings during the
domain adaptation phase to assess the performance of neural topic
model-based term extraction methods and other baseline models
in cross-domain term extraction tasks.

6 EXPERIMENT ANALYSIS
6.1 Experimental results in a domain
The overall performance of compared methods and the proposed
framework is indicated in Table 2.

Firstly, when we evaluate the traditional term extraction frame-
works, including ComboBasic, TermExtractor, and CoAKT, we ob-
serve that their precision (Pre) and recall (Rec) values are relatively
modest across all datasets. Simultaneously, it is evident that the two
pre-trained language models, TTE and BERT-biLSTM-CRF, outper-
form the conventional term extraction frameworks, ComboBasic,
TermExtractor, and CoAKt, underscoring the substantial capabil-
ities of pre-trained language models in terms of domain-specific
semantic information and their ability to harness domain knowl-
edge effectively. We observe that the TNE yields optimal results
in terms of precision and recall on the ACL, GENIA, TTCM, and
TTCW datasets. This suggests that the fusion of the neural topic
model and pre-trained language models facilitates the acquisition
of domain-specific thematic information, effectively enhancing the
representation capabilities of the topic-enhancement module within
the term extraction model.

6.2 Cross-domain results on Low Resource Data
To validate the domain training, domain adaptation, and domain
inference paradigms mentioned in CNTM, we focus on assessing
the performance of the model specifically in cross-domain termi-
nology extraction tasks. Specifically, in this study, we employ the
ACL dataset as the source domain dataset. We then evaluate the
experimental results when using GENIA, TTCM, and TTCW as
target domain datasets. During the domain adaptation phase, we
conduct experiments with small-sample adaptations set at 1-shot
and 5-shot scenarios. The cross-domain term extraction F1 scores
are presented in Table 3

We can find our model consistently achieves the highest F1
scores. This indicates that our model exhibits superior domain
transferability compared to other baseline models, ultimately en-
hancing the model’s scalability. In contrast to BERT-biLSTM-CRF,
TNE performs better in the few data scenario. This improvement
can be attributed to domain adaptation phase, which incorporates
an ElasticSearch-based topic enhancement module. This module
effectively leverages unsupervised topic information to identify
domain-specific thematic information, leading to enhanced term
extraction performance.
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Table 3: Performance of cross-domain terminology extraction

Method 1 shot 5 shot
GENIA TTCW TTCM GENIA TTCW TTCM

ComboBasic 0.08 0.04 0.03 0.09 0.04 0.02
TermExtractor 0.10 0.09 0.08 0.12 0.10 0.11
CoAKT 0.15 0.12 0.16 0.17 0.13 0.16
TTE 0.31 0.25 0.24 0.33 0.25 0.26
BERT-biLSTM-CRF 0.33 0.27 0.26 0.35 0.28 0.29
Ours 0.43 0.41 0.39 0.45 0.42 0.43

6.3 Ablation experiment
In this section, we conducted ablation experiments to analyze the
impact of major components of TNE framework: 1) CNTM-T:we
have removed the Topic Enhancement Module from the TNE frame-
work.; (2)we have excluded the Contrastive Learning from TNE
to evaluate whether it imposes limitations on the extraction of
domain-specific terms;

Table 4: Performance with Different Adaptation Shots

Method GENIA TTCW TTCM

CNTM-T 0.25 0.21 0.19
CNTM-C 0.31 0.28 0.29
CNTM 0.43 0.41 0.39

As Table 4 shows, when we remove the Topic Enhancement
Module in "CNTM-T," or Contrastive learning Module in "TNE-C",
there are noticeable drop in performance. Specially, TNE integrating
both modules, attained the highest performance with F1-scores of
0.43, 0.41, and 0.39. These results emphasize the importance of both
modules and their synergy for effective terminology extraction.

6.4 Template Prompt Comparison Experiment
To explore the influence of different templates on the cross-domain
term extraction task, we attempted to create distinct template
prompts for various datasets. For the four datasets, AC, GENIA,
TTCM, and TTCW, the corresponding template are shown in Ta-
ble 5 as follows: Initial templates included a single domain keyword,
while expanded templates enriched domain information from the
initial templates. The resulting term extraction F1 scores are illus-
trated in Figure 4

Figure 4 clearly shows that the extended template outperforms
the initial template in cross-domain experiments. This improvement

Table 5: Term Extraction Statistics for the Four Datasets

Dataset Initial template Extended template

ACL Linguistics Computational Linguistics
GENIA Biomedical Biomedical Science
TTCM Technology Mobile Technology
TTCW Energy Wind Energy

Figure 4: Experimental performance based on different tem-
plates

can be attributed to the enhanced semantic content provided by
the extended template for term labels.

7 CONCLUSION
In this study, we proposed a cross-domain neural topicmodel(dubbed
CNTM) to address low-resource term extraction challenges. CNTM
showed substantial advancements in recognizing domain-specific
terms, adapting to diverse domains, and has the potential to enhance
applications like knowledge graph construction and information
retrieval. The incorporation of topic-based enhancements and trans-
fer learning techniques enhances the capability to capture semantic
nuances, making it more adaptable to different domains, especially
resource-poor emerging domains. This paves the way for future
research to explore the framework’s further enhancements and
applications.

ACKNOWLEDGEMENT
This work is partially supported by National Nature Science Foun-
dation of China under No. U21A20488. We thank the Big Data
Computing Center of Southeast University for providing the facil-
ity support on the numerical calculations in this paper.

REFERENCES
[1] T. T. H. Hanh, M. Martinc, J. Caporusso, A. Doucet, S. Pollak, The recent advances

in automatic term extraction: A survey, CoRR abs/2301.06767 (2023). arXiv:
2301.06767, doi:10.48550/arXiv.2301.06767.
URL https://doi.org/10.48550/arXiv.2301.06767

[2] M. T. Pazienza, M. Pennacchiotti, F. M. Zanzotto, Terminology extraction: an anal-
ysis of linguistic and statistical approaches, in: Knowledge mining: Proceedings
of the NEMIS 2004 final conference, Springer, 2005, pp. 255–279.

[3] A. Peñas, F. Verdejo, J. Gonzalo, et al., Corpus-based terminology extraction
applied to information access, in: Proceedings of corpus linguistics, Vol. 2001,
2001, p. 458.

https://doi.org/10.48550/arXiv.2301.06767
https://doi.org/10.48550/arXiv.2301.06767
http://arxiv.org/abs/2301.06767
http://arxiv.org/abs/2301.06767
https://doi.org/10.48550/arXiv.2301.06767
https://doi.org/10.48550/arXiv.2301.06767


Enhancing Cross-Domain Term Extraction with Neural Topic-based Models IJCKG’24, December 8 to 9, 2023, Miraikan, Tokyo, Japan

[4] H. Du, Z. Le, H. Wang, Y. Chen, J. Yu, Cokg-qa: Multi-hop question answering
over covid-19 knowledge graphs, Data Intelligence 4 (3) (2022) 471–492.

[5] H. Chen, N. Hu, G. Qi, H. Wang, Z. Bi, J. Li, F. Yang, Openkg chain: A blockchain
infrastructure for open knowledge graphs, Data Intelligence 3 (2) (2021) 205–227.

[6] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive
survey on transfer learning, Proceedings of the IEEE 109 (1) (2020) 43–76.

[7] M. Peng, Q. Zhang, Y. Jiang, X. Huang, Cross-domain sentiment classificationwith
target domain specific information, in: I. Gurevych, Y. Miyao (Eds.), Proceedings
of the 56th AnnualMeeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, Association
for Computational Linguistics, 2018, pp. 2505–2513.

[8] Y. A. Winatmoko, A. A. Septiandri, A. P. Sutiono, Aspect and opinion term
extraction for hotel reviews using transfer learning and auxiliary labels, arXiv
preprint arXiv:1909.11879 (2019).

[9] H. T. H. Tran, M. Martinc, A. Pelicon, A. Doucet, S. Pollak, Ensembling transform-
ers for cross-domain automatic term extraction, in: International Conference on
Asian Digital Libraries, 2022, pp. 90–100.

[10] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of machine
Learning research 3 (Jan) (2003) 993–1022.

[11] Y. Miao, L. Yu, P. Blunsom, Neural variational inference for text processing,
in: M. Balcan, K. Q. Weinberger (Eds.), Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, Vol. 48 of JMLR Workshop and Conference Proceedings, JMLR.org,
2016, pp. 1727–1736.

[12] H. Zhao, D. Phung, V. Huynh, T. Le, W. Buntine, Neural topic model via optimal
transport, arXiv preprint arXiv:2008.13537 (2020).

[13] Y. Wang, X. Li, J. Ouyang, Layer-assisted neural topic modeling over document
networks., in: IJCAI, 2021, pp. 3148–3154.

[14] Y. Yang, B. Pan, D. Cai, H. Sun, Topnet: Learning from neural topic model to
generate long stories, in: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 1997–2005.

[15] P. Gupta, Y. Chaudhary, H. Schütze, Multi-source neural topic modeling in multi-
view embedding spaces, arXiv preprint arXiv:2104.08551 (2021).

[16] K.-h. Chen, H.-H. Chen, Extracting noun phrases from large-scale texts: A hybrid
approach and its automatic evaluation, arXiv preprint cmp-lg/9405034 (1994).

[17] K. Frantzi, S. Ananiadou, H. Mima, Automatic recognition of multi-word terms:.
the c-value/nc-value method, International journal on digital libraries 3 (2000)
115–130.

[18] J. Vivaldi, L. A. Cabrera-Diego, G. Sierra, M. Pozzi, et al., Using wikipedia to
validate the terminology found in a corpus of basic textbooks., in: LREC, Citeseer,
2012, pp. 3820–3827.

[19] Y. Yang, H. Yu, Y. Meng, Y. Lu, Y. Xia, Fault-tolerant learning for term extraction,
in: Proceedings of the 24th Pacific Asia Conference on Language, Information
and Computation, 2010, pp. 321–330.

[20] K. Khosla, R. Jones, N. Bowman, Featureless deep learning methods for automated
key-term extraction (2019).

[21] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, J. Han, Automated phrase mining from
massive text corpora, IEEE Transactions on Knowledge and Data Engineering
30 (10) (2018) 1825–1837.

[22] C. Lang, L. Wachowiak, B. Heinisch, D. Gromann, Transforming term extraction:
Transformer-based approaches to multilingual term extraction across domains,
in: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, Vol. ACL/IJCNLP 2021 of Findings of ACL, Asso-
ciation for Computational Linguistics, 2021, pp. 3607–3620.

[23] A. Hazem, M. Bouhandi, F. Boudin, B. Daille, Cross-lingual and cross-domain
transfer learning for automatic term extraction from low resource data, in: Pro-
ceedings of the Thirteenth Language Resources and Evaluation Conference, LREC
, Marseille, France, 20-25 June, European Language Resources Association, 2022,
pp. 648–662.

[24] K. Xu, X. Lu, Y. fang Li, T. Wu, G. Qi, N. Ye, D. Wang, Z. Zhou, Neural topic
modeling with deep mutual information estimation, Big Data Research 30 (2022)
100344.

[25] Y. Huang, K. He, Y. Wang, X. Zhang, T. Gong, R. Mao, C. Li, Copner: Contrastive
learning with prompt guiding for few-shot named entity recognition, in: Pro-
ceedings of the 29th International conference on computational linguistics, 2022,
pp. 2515–2527.

[26] X. Zhang, Y. Jiang, X. Wang, X. Hu, Y. Sun, P. Xie, M. Zhang, Domain-specific
ner via retrieving correlated samples, arXiv preprint arXiv:2208.12995 (2022).

[27] B. Elasticsearch, Elasticsearch: The official distributed search & analytics engine
(2020).

[28] S. E. Robertson, S. Walker, Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval, in: SIGIR’94, Springer, 1994, pp. 232–
241.

[29] N. A. Astrakhantsev, D. G. Fedorenko, D. Y. Turdakov, Methods for automatic
term recognition in domain-specific text collections: A survey, Programming and
Computer Software 41 (2015) 336–349.

[30] F. Sclano, P. Velardi, Termextractor: a web application to learn the shared ter-
minology of emergent web communities, in: Enterprise Interoperability II: New

Challenges and Approaches, Springer, 2007, pp. 287–290.
[31] C. Lang, L. Wachowiak, B. Heinisch, D. Gromann, Transforming term extraction:

transformer-based approaches to multilingual term extraction across domains,
in: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
2021, pp. 3607–3620.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural topic model
	2.2 Automatic term extraction

	3 PROBLEM DEFINITION
	4 Method
	4.1 Domain training phase
	4.2 Domain Adaptation
	4.3 Domain Inference Phase

	5 Experiment
	5.1 Experiment Set
	5.2 Baseline Models
	5.3 Evaluation Metrics
	5.4 Implementation Details

	6 Experiment analysis
	6.1 Experimental results in a domain
	6.2 Cross-domain results on Low Resource Data
	6.3 Ablation experiment
	6.4 Template Prompt Comparison Experiment

	7 Conclusion
	References

