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ABSTRACT
VirtualHome is a home simulator that enables agents to perform

tasks by following action scripts. The scripts contain instructions

involving specific actions and objects. However, creating the scripts

manually is a time-consuming process. Natural language statements

can be used to communicate intentions and requirements, making

the process more intuitive.While some research has been conducted

on automatically generating action scripts from natural language

sentences, the current executable rate of the scripts is only around

35-40%.

This research aims to develop action scripts that agents can exe-

cute on the VirtualHome simulator. Our system takes daily activity

descriptions and utilizes a Large Language Model (GPT-3.5) and

SentenceTransformers to generate action scripts. It also verifies the

execution of the generated scripts using the VirtualHome simulator

and adjusts them as needed.

To assess the system’s performance, we use “LCSscore” and the

execution rate. LCSscore is based on the Longest Common Subse-

quence (LCS) between the correct and generated data. LCSscore

requires the generated data to match perfectly with the correct data.

Therefore, we introduce a new evaluation index called “Correctness”

to evaluate the accuracy of the action sequence in case the order

differs from the correct data.

The experimental results show that the execution rate was nearly

100%. However, no satisfactory results were obtained in LCSscore.
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The Correctness results revealed a tendency to have missing action

steps, although it was less likely to generate incorrect action steps.
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1 INTRODUCTION
Embodied AI [4] has undergone significant growth in recent years.

It involves training agents such as virtual robots to perform complex

tasks using a variety of objects in real and virtual environments [12,

15, 17, 20, 21]. However, this method requires a large amount of

data.

One of the simulators used for Embodied AI is VirtualHome [10,

11, 13, 14]. This enables agents to perform tasks based on action

scripts, which consist of instructions involving actions and objects.

However, manually creating scripts is time-consuming. The process

will be more intuitive if users can communicate their intentions

and requirements using natural language statements.

Although some research has been conducted to generate action

scripts automatically from natural language sentences [7, 13], the

executable rate of generated action scripts is currently only around

35-40%. One of the challenges in efficiently developing data for

agent learning is to improve the rate.
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This study aims to create action scripts that agents can execute

on VirtualHome (VH) using the description of daily activities. To

achieve the objective, the proposed system employs Large Lan-

guage Model (LLM: GPT-3.5) and SentenceTransformers
1
[16] to

generate action scripts. The system then verifies the execution of

the generated scripts using VH and adjusts them as necessary.

In the evaluation experiment, the system performance was as-

sessed using an evaluation index [13] based on the Longest Com-

mon Subsequence (LCS) with the generated data and the correct

data. Additionally, to evaluate the accuracy when the order of the

action sequence of the generated data differs from one of the cor-

rect data, a new evaluation index called “Correctness” has been

introduced. This index considers the order of actions in a sequence

and provides a more comprehensive evaluation of the accuracy of

the generated scripts.

The contributions of this study are as follows:

(1) We have created a system that generates action scripts that

agents can perform on VirtualHome from descriptions of

their daily activities in natural language.

(2) Our system improves the execution rate of action scripts

compared to existing research.

(3) We introduce a new evaluation index called “Correctness” to

complement the existing evaluation index using LCS, which

requires perfect matches with the correct action script to

evaluate the accuracy of the action sequence in case the

order differs from the correct data.

The remainder of this paper is organized as follows. Section

2 discusses related work, including Embodied AI and automatic

action script generation. Section 3 explains the proposed system

and its components. Section 4 describes the evaluation experiments,

including the evaluation data, methods, results, and discussion.

Finally, Section 5 concludes the paper.

Our reference implementation of the system is publicly available

on Github.
2

2 RELATEDWORK
2.1 Embodied AI
Embodied AI [4] research involves training agents such as vir-

tual robots to learn in both real-world and virtual environments,

enabling them to solve complex tasks that involve multiple ob-

jects. Some examples of Embodied AI tasks include EQA (Embodied

Question Answering) [20], where a virtual robot moves through its

environment and perceives the environment to answer questions

about it; VDN (Vision and Dialog Navigation) [21], where a virtual

robot responds to specific instructions from humans and provides

guidance; and ObjectNav (Object-Goal Navigation) [15], where a

virtual robot finds and guides humans to specific objects within the

environment.

Savva et al. [12] devised Habitat, a flexible and high-performance

simulator platform that can handle configurable agents, sensors,

and standard 3D datasets. Szot et al. [17] proposed Habitat 2.0 [12],

which optimizes and alternates physics simulation and rendering

1
https://www.sbert.net/

2
https://github.com/JinAoyama/actionscript_generation_in_vh

Code 1: Example Action Scripts for “Relax on Sofa”
Label : Relax on sofa

Description : I turn on the tv and sit in the sofa. I watch the tv.

Action Script :

[WALK] <livingroom> (1)

[WALK] <tv> (1)

[FIND] <tv> (1)

[SWITCHON] <tv> (1)

[FIND] <sofa> (1)

[SIT] <sofa> (1)

[TURNTO] <tv> (1)

[WATCH] <tv> (1)

processes, making it 100 times faster than the original Habitat

platform.

2.2 VirtualHome
VirtualHome [10, 11, 13, 14] is a platform that enables agents to

perform tasks based on action scripts that consist of a series of

steps. Code 1 provides an example of an action script. In this action

script, the activity “Relax on sofa” in the home is represented by a

series of steps: going to the living room, turning on the TV, sitting

on the sofa, and watching TV. In each step, an agent acts with a

few objects, and each object is identified by the object id.

The preconditions that specify the environmental constraints

under which the action should be performed must be met to execute

an action. Information about these preconditions can be found in

VH’s documentation
3
and GitHub

4
, which includes information

about the constraints on object properties, object state, and the

positional relationship between the agent and the object.

VH is distributed with the dataset containing action labels, action

descriptions, and corresponding action scripts, which have been

collected through crowdsourcing. However, this dataset contains

many action scripts that cannot be executed in VH due to objects

that are not present or preconditions that are not satisfied. As a

result, around 60% of the total dataset contains action scripts that

cannot be executed on VH.

2.3 Action Scripts Generation
Two research focus on generating action scripts for VitualHome

from natural language sentences [7, 13].

Huang et al.[7], used GPT-3 [1], Codex [2], and BERT [3] to

generate action scripts based on abstract descriptions of actions

expressed in natural language such as “Make breakfast.” The goal

was to generate action scripts that can be executed in VH.

This method involved using GPT-3 or Codex to plan actions

based on an abstract description of daily life and then generate the

next step. These action steps are then converted into action scripts

using BERT. Based on the previous steps, the process is repeated

for subsequent actions. However, executing the action scripts in

VH is challenging, and based on experimental results, only 35% of

the generated action scripts could be performed in VH.

3
http://virtual-home.org/documentation/master/kb/actions.html

4
https://github.com/xavierpuigf/virtualhome/tree/master/virtualhome/simul
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On the other hand, Puig et al. [13] treat the task as a translation

problem and train a seq2seq model with MLE (Maximum Likelihood

Estimation method) on the dataset. They then trained the model

through reinforcement learning, where the reward was based on

the LCS of correct and generated data and the rate of execution on

the simulator. The experimental results showed that the ratio of

executable action scripts among those generated is 35-40%.

Notably, more executable action scripts should be used to gener-

ate training data for the agent.

2.4 Formal Process Generation with LLM
This section describes research on utilizing LLM to generate formal

processes from natural language sentences.

Kalakonda et al. [9] present Action-GPT, a framework that seeks

to enhance the quality and generality of action generation using

LLM, specifically GPT-3. The framework takes natural language sen-

tences as input and utilizes a designed prompt function to generate

suitable prompts from action phrases within the sentences. These

prompts are then passed onto LLM to produce a detailed descrip-

tion of the physical action, ultimately represented as a sequence of

human poses.

Wu et al. [19] introduce SPRING, a framework that employs

LLM specifically, GPT-3, GPT-3.5, and GPT-4 to reason and learn

knowledge to play a game. The framework’s input consists of the

LaTeX source of the original academic article of the game [6] and a

description of the agent’s current observations as the game context.

SPRING utilizes a directed acyclic graph with game-related ques-

tions as nodes and dependencies as edges. It identifies the optimal

action in the environment by scanning the directed acyclic graph

and computing the LLM responses to each node in topological

order.

Hwang et al. [8] focused on cooking recipes. The authors ac-

knowledge that LLM can potentially adapt existing textual infor-

mation into a more easily understood and usable form and thus

proposed a prompt that breaks recipes down into more straightfor-

ward steps. The prompts are based on the original recipe and the

ingredient list, prompting modifications to the recipe written in

complex text. The authors designed and evaluated a human evalua-

tion task to systematically compare the original and revised recipes.

The results of the evaluation showed that the annotators preferred

the modified recipe.

2.5 Knowledge Graph Reasoning Challenge for
Social Issues 2022 (KGRC4SI)

The Knowledge Graph Reasoning Challenge for Social Issues 2022

(KGRC4SI) was held in Japan from September 2022 toMay 2023. The

challenge aimed to encourage the development of systems capable

of identifying and explaining dangerous situations that might occur

in the homes of older people
5
.

To achieve this goal, the organizers used VirtualHome2KG [5] to

convert videos into knowledge graphs that depict “when,” “where,”

“who,” “to what object,” and “what action” was taken, as well as the

resulting “state” and “location.” [18]

The primary task of the KGRC4SI was to identify dangerous sit-

uations from the provided video and knowledge graph. In addition,

5
https://challenge.knowledge-graph.jp/2022/index_en.html

the task included explaining the specific factors contributing to the

dangerous condition and presenting safer alternatives within the

given scope.

Since not all videos and knowledge graphs included dangerous

situations, data representing numerous daily life situations are

needed, and preparing data was one of the tasks of the KGRC4SI.

All six entries in the KGRC4SI utilized knowledge graphs, and two

employed knowledge graph embedding and graph neural networks.

Since more data is needed for these works to function correctly,

this task is also expected to contribute to this area.

The evaluation of this research will utilize data provided by

KGRC4SI [18].

3 PROPOSED SYSTEM
3.1 Outline
This section presents our proposed method, which consists of three

components. Our proposed method aims to generate an executable

action plan from an input description of daily activities using a

combination of LLM, SentenceTransformers, and VH.

The configuration of the proposed method is illustrated in Fig 1.

Component 1 takes an input description of daily activities and

processes it using LLM to generate an action plan. The generated

action plan contains a list of action steps separated by commas. For

example, Component 1 receives “pick up phone and sit on the sofa”

and outputs “grab cellphone, walk to sofa, sit on sofa.”

Component 2 uses the SentenceTransformers sentence similarity

technique to convert the action plan into an action script. The

converted action script is then passed to Component 3. For example,

Component 2 receives “grab cellphone, walk to sofa, sit on sofa” and

outputs [“[GRAB] <cellphone> (1)”, “[WALK] <sofa> (1)”, “[SIT]

<sofa> (1)”].

Component 3 takes an action script as input, verifies its execution

using the VH, andmodifies it if necessary. Themodified action script

is then passed back to Component 2 until the action script becomes

executable and no further modifications are required. For example,

Component 3 inputs [“[GRAB] <cellphone> (1)”, “[WALK] <sofa>

(1)”, “[SIT] <sofa> (1)”] and outputs: [“[WALK] <cellphone> (1)”,

“[GRAB] <cellphone> (1)”, “[WALK] <sofa> (1)”, “[SIT] <sofa> (1)”].

This means that the input sequence of actions has added an extra

step of “[WALK] <cellphone> (1)” at the beginning.

3.2 Rewriting Description with LLM
This section explains Component 1 in Fig 1. This research utilizes

GPT-3.5 as the LLM to rephrase the input description. The input

description is rewritten for two primary reasons.

(1) Depending on the author, the granularity of the input de-

scription’s content may differ, with some being abstract and

others being detailed. However, the input description must

be described since VH necessitates detailed action instruc-

tions.

(2) The input description may include actions, objects, or rooms

that do not exist in VH, making it impossible to simulate

them.

We utilized LLM to enhance the input description. This involved

creating a list of all possible actions that can be performed within

https://challenge.knowledge-graph.jp/2022/index_en.html
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Code 2: LLM Prompt in Component 1
Rewrite the description of activity entered by the user as a

comma−separated action plans, using only defined

Available Actions and Available Objects.

Do not omit the object of the action and do not use pronouns.

Definition:

Available Actions: ( Insert list of actions )

Available Objects: ( Insert list of objects )

Table 1: Hash Table for Action Script Conversion

Key Value

Walk bathroom [WALK] ⟨ bathroom ⟩ (1)
Walk bedroom [WALK] ⟨ bedroom ⟩ (1)
.
.
.

.

.

.

Sit chair [SIT] ⟨ chair ⟩ (1)
Sit sofa [SIT] ⟨ sofa ⟩ (1)
.
.
.

.

.

.

VH and identifying all the objects and rooms within it. This infor-

mation creates a detailed action plan description while ensuring

the LLM output adheres to specific restrictions. Code 2 shows the

main content of the LLM prompt.

3.3 Conversion to Action Script with Sentence
Embeddings

This section discusses Component 2 in Figure 1.

Initially, we create all the possible action statements that can

be performed on VH and objects and rooms within VH. We also

created a hash table shown in Table 1 to obtain the action scripts

corresponding to the created action statements.

Next, we generate a list of action plans by rewriting the input

sentences using LLM. Then, based on these plans, we convert them

into action scripts using the SentenceTransformers sentence simi-

larity technique. For each item in the action plan list, we identify

the action sentences with the highest similarity in the created dic-

tionary and convert them into the corresponding action scripts.

Algorithm 1 shows the algorithm of Component 2.

To achieve this, we utilized the pre-trained model all-MiniLM-

L6-v2
6
due to its high speed and quality.

3.4 Verification and Modification of Action
Script Execution

This section describes Component 3 in Figure 1. Component 3 tests

whether the generated action scripts can be run on VH. If the action

script fails to execute, the system identifies the line that caused the

error and outputs the error message. If the error message indicates

that the action cannot be performed because the agent is too far

away from the target object, the system fixes it by adding a line

of action like “WALK” or “FIND” that will move the agent closer

to the object. However, if the action script fails to be executed for

6
https://www.sbert.net/docs/pretrained_models.html

Algorithm 1 Component2 Algorithm

𝑚𝑜𝑑𝑒𝑙 ← SentenceTransformers

ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 ← hash table for action acript conversion

𝑘𝑒𝑦𝑠 ← hash table keys

𝑘𝑒𝑦𝑠𝑀𝑜𝑑𝑒𝑙 ←𝑚𝑜𝑑𝑒𝑙 .encode(𝑘𝑒𝑦𝑠)

function𝑚𝑜𝑠𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)

𝑐𝑜𝑠𝑆𝑖𝑚 ← 𝑐𝑜𝑠𝑆𝑖𝑚(𝑚𝑜𝑑𝑒𝑙 .encode(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒), 𝑘𝑒𝑦𝑠𝑀𝑜𝑑𝑒𝑙) [0]
𝑎𝑙𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ← []

for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑠𝑆𝑖𝑚) − 1 do
append(𝑎𝑙𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 , [𝑐𝑜𝑠𝑆𝑖𝑚[𝑖], 𝑖])

end for

𝑎𝑙𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ← sorted(𝑎𝑙𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ,

key=lambda x: x[0], reverse=True)

return 𝑘𝑒𝑦𝑠 [𝑎𝑙𝑙𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 [0] [1]]
end function

𝑠𝑡𝑒𝑝𝑠 ← Component1 output

𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑟𝑖𝑝𝑡 ← []
for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑡𝑒𝑝𝑠) − 1 do

append(𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑟𝑖𝑝𝑡 ,ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 .get(mostSimilarity(𝑠𝑡𝑒𝑝𝑠 [𝑖])))
end for

reasons other than the errors above, then the failed line is deleted

as it cannot be corrected.

4 EXPERIMENTS
4.1 Experiment Evaluation Overview
In this evaluation experiment, we assess the accuracy and the ratio

of action scripts generated from natural language descriptions of

daily activities with two datasets. To measure accuracy, we use the

LCS-based evaluation index [13]: “LCSscore”. However, this index

requires perfect matches generated action scripts with the correct

action scripts. Therefore, we have defined a new evaluation index

called “Correctness” to assess the accuracy of the action sequence

even when the order of the generated data differs from the correct

data.

4.2 Evaluation Datasets
VH comprises seven houses called “scenes”, each with various

rooms and objects like Table 2.

Two datasets, VH dataset [13] and KGRC4SI dataset [18], are used

in this research. VH dataset is a social cloud dataset that provides

data for each scene separately. However, Puig et al. [13] use the

VH dataset for evaluation without segregation into corresponding

scenes. We use their results as a baseline experiment. The KGRC4IS

dataset was created for KGRC4SI to develop systems that can iden-

tify and explain dangerous situations in the homes of older people.

Table 3 shows the number of evaluation data available for each

https://www.sbert.net/docs/pretrained_models.html
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Action Script: 

[Action] <Object> (ID), #add
[Action] <Object> (ID),
[Action] <Object> (ID), #remove
…

Rewritten Description :

ActionStep1, ActionStep2, …

Description of Daily Activities
Input

・Executable Actions in VirtualHome
・Objects in VirtualHome 

Action Script: 

[Action] <Object> (ID),
…

Verification and 
Modification of

Action Script Execution

Rewriting Description 
with LLM (GPT-3.5)

Component1

Conversion to Action Script
with Sentence Embeddings

(SentenceTransformers)

Component2 Component3

Figure 1: Method Configuration

Table 2: Number of Rooms and Objects in Each Scene

Env Room Object

types total types total

Scene1 4 4 111 439

Scene2 4 4 98 315

Scene3 4 5 98 395

Scene4 4 4 107 354

Scene5 4 4 94 353

Scene6 4 4 96 320

Scene7 4 4 121 349

Table 3: Number of Action Scripts for Each Scene

Env VH dataset KGRC4IS dataset

original target original target

Scene1 518 194 133 98

Scene2 510 214 77 48

Scene3 525 199 119 85

Scene4 520 169 66 46

Scene5 500 206 122 82

Scene6 497 199 126 92

Scene7 1023 358 63 40

total 4093 1539 706 491

scene. Data containing actions and objects that do not exist in the

corresponding scenes or cannot be executed are excluded from this

experiment.

4.3 Evaluation Index
We evaluate the proposed system using three indices: LCSscore,

Correctness, and Simulator.

LCSscore
The LCSscore is calculated based on the Longest Common

Subsequence (LCS) between the generated and correct action

scripts. It is defined as the length of the LCS divided by the

greater lengths of the generated and correct action scripts. To

evaluate the similarity between different action scripts, we

use three different methods: LCSscore(Action), which is cal-

culated with LCS only on actions; LCSscore(Object), which

is calculated with LCS only on objects; and LCSscore(Step),

which is calculated with LCS on steps(combinations of ac-

tions and objects).

𝐺𝐴𝐿 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 (1)

𝐺𝑂𝐿 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐿𝑖𝑠𝑡 (2)

𝐺𝑆𝐿 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑆𝑡𝑒𝑝𝐿𝑖𝑠𝑡 (3)

𝐶𝐴𝐿 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 (4)

𝐶𝑂𝐿 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑠𝐿𝑖𝑠𝑡 (5)

𝐶𝑆𝐿 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑡𝑒𝑝𝐿𝑖𝑠𝑡 (6)

𝐿𝐶𝑆𝑠𝑐𝑜𝑟𝑒 (𝐴𝑐𝑡𝑖𝑜𝑛) = 𝐿𝐶𝑆 (𝐺𝐴𝐿,𝐶𝐴𝐿)
𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝐴𝐿), 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝐴𝐿)) (7)

𝐿𝐶𝑆𝑠𝑐𝑜𝑟𝑒 (𝑂𝑏 𝑗𝑒𝑐𝑡) = 𝐿𝐶𝑆 (𝐺𝑂𝐿,𝐶𝑂𝐿)
𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑂𝐿), 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑂𝐿)) (8)

𝐿𝐶𝑆𝑠𝑐𝑜𝑟𝑒 (𝑆𝑡𝑒𝑝) = 𝐿𝐶𝑆 (𝐺𝑆𝐿,𝐶𝑆𝐿)
𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑆𝐿), 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑆𝐿)) (9)

Correctness
In an action script, “WALK” and “FIND” are used for the same

purpose, which is to approach an object. Thus, the agent’s

behavior remains the same whether the “WALK” or “FIND”

action is taken. LCSscore treats the sequence of actions as

different when the order of actions is not identical to the

correct data, even if the actions’ contents are accurate. This

is an issue because the order of actions does not affect the

agent’s behavior.

To address this problem, we developed a new evaluation

index called “Correctness,” This metric measures the correct-

ness of the generated data, considering the order of actions.

It is based on how much the generated data can match the

correct data steps (combinations of actions and objects). The

Algorithm 2 counts the number of steps in which the gener-

ated data matches the steps of the correct data as the number

of correct answers. Precision, Recall, and F1 values are cal-

culated to evaluate the accuracy of the generated data.

Simulator
The Simulator is an index used to evaluate the ratio of exe-

cutable action scripts. It can be defined in three ways:

(1) The ratio of action scripts in which all steps are executable

out of all action scripts.
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Algorithm 2 Correctness Algorithm

function 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝐿)

for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿)) − 1 do
𝐿[𝑖] ← 𝐿[𝑖] .replace(“FIND”, “WALK”)

end for

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐿𝑖𝑠𝑡 ← []
for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) − 1 do

if 𝑖 = 0 or 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐿𝑖𝑠𝑡 [−1] ≠ 𝐿[𝑖] or “WALK” not in

L[i] then
append(𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐿𝑖𝑠𝑡, 𝐿[𝑖])

end if
end for
return 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐿𝑖𝑠𝑡

end function

𝐴← correct data

𝐵 ← generated data

𝐴← 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝐴)
𝐵 ← 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝐵)
𝐵_𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵)
𝑐𝑜𝑢𝑛𝑡 ← 0

for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) − 1 do
for 𝑗 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) − 1 do

if 𝐴[𝑖] = 𝐵 [𝑖] then
𝑐𝑜𝑢𝑛𝑡 += 1

Remove 𝐵 [ 𝑗] from 𝐵

break
end if

end for
end for

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑐𝑜𝑢𝑛𝑡/𝐵_𝑙𝑒𝑛𝑔𝑡ℎ
𝑅𝑒𝑐𝑎𝑙𝑙 ← 𝑐𝑜𝑢𝑛𝑡/𝑙𝑒𝑛𝑔𝑡ℎ(𝐴)
𝐹1← 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)

(2) The ratio of steps that could be executed from all steps in

the action script.

(3) The average ratio of all action scripts from the first step

to the step that could be executed.

The existing research [13] used for comparison did not spec-

ify the definition of the Simulator, but it was assumed that

they used the first description above. Therefore, this research

will use the first description to define the Simulator.

4.4 Evaluation Methods
Action scripts were generated for the VH dataset and the KGRC4SI

dataset using the comment on the second line of the data as input.

The columns of actions after the fourth line were considered correct

and compared with the generated action scripts.

In VH, objects are related to classes (e.g., “fruit”: “watermelon”,

“apple”, “banana”]). The class names in the action script are auto-

matically mapped to the object names when the simulation is run.

The action scripts in the VH dataset are described by class name,

except for objects that do not belong to a class.

Our system generates action scripts based on object names,

which may lead to discrepancies compared to the VH dataset’s

action scripts. As a result, we also create and evaluate action scripts

where the object names in the generated scripts are replaced with

class names. This object-to-class namesmapping is performed using

dictionaries
7
.

For assessing the system using the LCSscore as the evaluation

index, we will use the results of the experiment conducted by Puig

et al. [13] on the VH dataset as a baseline for comparison. The eval-

uation values for the KGRC4SI dataset are also given for reference.

Regarding the evaluation using Correctness as the evaluation

index, the respective evaluation values for the VH and KGRC4SI

datasets are presented.

Note that version 2.3 of the simulator was used for the eval-

uation with the VH dataset. The version of the simulator used

in the baseline experiment is unknown. For evaluation with the

KGRC4SI dataset, we used the AIST version of the VH simulator
8

with extended executable actions. The KGRS4SI dataset is designed

explicitly for the AIST version of the VH simulator.

4.5 Experiment Results
Evaluation with LCSscore and Simulator

In this research, we measured the LCSscore and Simulator

using the VH data set and compared them with the baseline.

Table 4 shows the results of these measurements. The head-

ing “Action” shows the value of the LCSmeasured only by the

action in the action script. “Objects” shows the LCSmeasured

only for the objects of the action script, and “Steps” shows

the LCS measured in steps of the action script (combinations

of actions and objects). The “Mean” column represents the

average of “Action,” “Objects,” and “Steps.” The “Simulator”

column shows the Simulator values in the simulator.

Methods MLE, PG(LCS), and PG(LCS+Sim) were taken from

the descriptions of the existing research [13] mentioned ear-

lier, and the scene used for the Simulator measurements

is unknown. MLE is a Seq2Seq model trained using Maxi-

mum Likelihood Estimation methods. PG(LCS) is a reinforce-

ment learning model that uses LCS rewards for MLE, and

PG(LCS+Sim) is a reinforcement learning model that uses

LCS and Simulator rewards for MLE.

In this research, we used two methods: Ours(Class) and

Ours(Object), and the results presented are an average of the

experimental outcomes for all scenes. Ours(Class) refers to

action scripts generated using the class names for objects,

while Ours(Object) refers to action scripts generated using

the object names. Ours(Object) has a low LCSscore but the

Simulator close to 100%. On the other hand, Ours(Class) has

7
https://github.com/xavierpuigf/virtualhome/blob/master/virtualhome/resources/

class_name_equivalence.json

8
https://github.com/aistairc/virtualhome_unity_aist/releases/

https://github.com/xavierpuigf/virtualhome/blob/master/virtualhome/resources/class_name_equivalence.json
https://github.com/xavierpuigf/virtualhome/blob/master/virtualhome/resources/class_name_equivalence.json
https://github.com/aistairc/virtualhome_unity_aist/releases/
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Table 4: LCSscore

Method Action Objects Steps Mean Simulator (%)

MLE 0.777 0.723 0.686 0.729 38.6

PG(LCS) 0.803 0.766 0.732 0.767 35.5

PG(LCS+Sim) 0.806 0.775 0.740 0.774 39.8

Ours(Class) 0.493 0.477 0.415 0.462 55.3

Ours(Object) 0.493 0.119 0.095 0.235 99.2

Table 5: LCSscore(KGRC4SI dataset) (which contains Abnor-
mal category data

Env Action Objects Steps Mean Simulator (%)

Scene1 0.448 0.429 0.352 0.409 90.8

Scene2 0.520 0.529 0.430 0.493 79.1

Scene3 0.439 0.396 0.347 0.394 92.9

Scene4 0.472 0.445 0.371 0.429 82.6

Scene5 0.446 0.407 0.340 0.398 93.9

Scene6 0.439 0.380 0.330 0.383 93.5

Scene7 0.481 0.493 0.417 0.464 77.5

Mean 0.464 0.440 0.369 0.424 87.2

an inferior LCSscore compared to the baseline. However, its

Simulator has a slight advantage.

Table 5 shows the measurement results of LCSscore and Sim-

ulator using the KGRC4SI dataset. It shows the outcomes for

each scene utilized in the experiment. Although the Simula-

tor is 87%, the LCSscore is low.

Evaluation with Correctness
In this experiment, we measured the Correctness of the ac-

tion scripts generated with the class names and object names

using the VH dataset and KGRC4SI dataset. Table 6 shows

the results of measuring the Correctness of the action scripts

generated with the class names using the VH dataset. Pre-

cision is high. However, the Recall is not satisfactory. On

the other hand, Table 6 shows the results of measuring the

Correctness of the action scripts generated with the object

names using the VH dataset. Both Precision and Recall are

low. Table 7 shows the results of measuring Correctness us-

ing the KGRC4SI dataset. Compared to Table 6, the values

are lower for all scenes.

4.6 Discussion
The results presented in Section 4.5 show that Ours(Object) has a

low LCSscore. This is because the VH dataset has action scripts

written in the class names, which we do not consider a significant

practical issue for the generated action scripts.

Ours(Class), on the other hand, has a low Simulator because

classes in action scripts are only sometimes mapped to objects

in the VH environment during simulation. However, this is not

considered a practical problem since Ours(Class) is generated for

evaluation purposes.

We are initially considering simulating Ours(Object), and al-

though the LCSscore results for Ours(Class) are inferior to the

baseline, the Simulator results for Ours(Object) are superior.

Table 6 in Section 4.5 shows the results that show the generated

step’s high Precision, indicating that it is more likely to be correct

and less likely to generate an incorrect step. However, The Recall

results reveal that only about 54% of the steps in the correct action

script were fulfilled.

These results show that while the wrong steps are unlikely to be

generated, the missing steps are numerous. Manymissing steps may

be due to including action steps in the corresponding action scripts

that must be explicitly described in the input action descriptions.

In such a situation, it becomes challenging to complement these

action steps with LLM.

Moreover, if the input action description is abstract, LLM will

generate general action steps. However, an abstract description is

difficult to match because multiple possible action steps exist.

The Simulator evaluation results show that the Simulator may

be less than 100% due to the initial position of the agent in the

VH environment. The execution of an action is dependent on the

relative position of the agent and the target object. In VH, the

agent’s initial position is randomly assigned when not specified.

This may explain why the Simulator is less than 100%. Therefore,

it is essential to specify the initial position when generating the

action script, and the fixed initial position information should be

included as part of the generated data.

Regarding the KGRC4SI dataset in Table 3, some action scripts

failed to execute during the experiment despite creating videos and

KGs with VirtualHome2KG. This may be due to the initial settings

of the execution environment, such as the initial position.

There are three possible reasons why the evaluation results using

the KGRC4SI dataset in Table 7 are lower than those using the VH

dataset in Table 6.

(1) The number of actions in the AIST version of VH has more

than doubled compared to the original VH, making it difficult

tomatch actions. Adding actions such asWalk,WalkForward,

and WalkToward to natural language expressions has made

it challenging to determine which action is being referred

to, thus lowering the evaluation index.

(2) Since the action scripts in the KGRC4SI of the dataset are

written using object names, it is important to identify the

objects precisely.

(3) The KGRC4SI dataset is categorized according to the data

type, with Abnormal data describing dangerous behaviors

in the home. However, the input text for Abnormal data

includes an extra sentence explaining why the behavior is

dangerous, even though it is irrelevant to the content.

Table 7 shows the results of measuring Correctness from the

KGRC4SI dataset, excluding the data in a category named Abnormal,

to verify the third reason. This is because many of the action scripts
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Table 6: Correctness

Env Class Object

Precision Recall F1 Score Precision Recall F1 Score

Scene1 0.740 0.581 0.651 0.157 0.131 0.143

Scene2 0.703 0.548 0.616 0.161 0.124 0.140

Scene3 0.726 0.531 0.613 0.140 0.103 0.119

Scene4 0.689 0.491 0.573 0.215 0.155 0.180

Scene5 0.678 0.516 0.586 0.127 0.100 0.112

Scene6 0.732 0.551 0.629 0.178 0.135 0.154

Scene7 0.682 0.549 0.608 0.197 0.154 0.173

Mean 0.707 0.538 0.611 0.168 0.129 0.146

Table 7: Correctness(KGRC4SI dataset) (# of Ab. is the number of Abnormal Category data)

Env with Abnormal category data without Abnormal category data

Precision Recall F1 Score Precision Recall F1 Score # of Ab.

Scene1 0.570 0.469 0.514 0.591 0.481 0.530 19

Scene2 0.607 0.538 0.570 0.634 0.563 0.596 11

Scene3 0.539 0.452 0.492 0.551 0.468 0.506 16

Scene4 0.649 0.494 0.561 0.680 0.499 0.575 10

Scene5 0.548 0.443 0.490 0.563 0.462 0.507 16

Scene6 0.548 0.449 0.494 0.568 0.472 0.515 17

Scene7 0.652 0.518 0.577 0.671 0.541 0.599 8

Mean 0.588 0.480 0.528 0.608 0.498 0.547 -

in the Abnormal category had extra descriptions attached to them.

The right column shows the number of data in the category initially

included. The evaluation values are slightly higher than the results

in Table 7. We think this confirms the third reason.

The lower evaluation results using the KGRC4SI dataset in Ta-

ble 5 compared to those using the VH dataset in Table 4 can be

attributed to the abovementioned reasons. Additionally, the exe-

cution conditions of the actions available in the AIST version of

VH depend on the location relationship between the agent and the

target object. This may be one of the reasons for the low Simulator

compared to the evaluation results using the VH dataset.

5 CONCLUSION
This research proposed a system that generates action scripts that

virtual agents can execute in VH, using descriptions of daily activi-

ties as input. The system utilizes LLM (GPT-3.5) and SentenceTrans-

formers to generate action scripts, which are verified using VH.

The system detects errors and refines the action scripts to improve

accuracy. This includes shortening the distance to the objects and

eliminating actions that cannot be executed.

In the initial phase, the proposed system was tested with the

VH dataset and compared to existing research using metrics like

LCSscore, which measures the similarity between generated and

correct data and the execution rate (Simulator). While the LCScore

of the proposed system was lower than that of existing research.

Since the Simulator reached nearly 100%, achieving the primary

goal of generating executable action scripts. The evaluation indi-

cated Precision of Correctness is high, but low Recall. This suggests

that generating wrong steps was less likely, but many steps needed

to be included. Furthermore, it was observed that the Simulator did

not reach 100%. This is due to the initial position of the agent. Ad-

dressing this issue involves generating action scripts that consider

the agent’s initial point.

Using the KGRC4SI dataset, the evaluation resulted in a Simulator

score of 87%. While partially achieving the objective of generating

executable action scripts, LCSscore and Correctness were lower

than the results from the VH dataset. We discussed the reasons for

this difference.

A potential future solution to improve LCSscore and Correct-

ness could involve machine learning, using our experiment dataset

for training data. However, the baseline highlights the challenge

of generating executable action scripts. A potential countermea-

sure would be to adapt the action scripts to the environment after

generation or verify their execution and modify them as needed.

Furthermore, the performance of LLM is significantly dependent

on the content of the prompt. Therefore, it will be necessary in the

future to compare and analyze the results when the prompt content

is altered.

Finally, it should be noted that this research is based on VH and

has not been tested in real-world experiments. Therefore, conduct-

ing real-world experiments may be a potential future challenge.
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