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ABSTRACT
In recent years, graph neural network (GNN) has been actively
studied to solve graph-related tasks including link prediction. How-
ever, although many GNNs can obtain node embeddings that take
into account the structure of surrounding nodes, it is complicated
to learn graph embedding that takes into account the structure of
the entire network. Some models are also proposed for link predic-
tion corresponding to dynamic networks, but their performance
is still to be improved. In this study, graph isomorphism network
(GIN) is explored to generate node embeddings and graph em-
bedding that take into account both the surrounding and overall
structures of the network. Node embeddings are integrated with
graph embedding to obtain high-level representation. We propose
a model EvolveGIN, which combines GNN (typically GIN) with
RNN (typically LSTM) to achieve dynamic link prediction. This
model adapts GIN along the temporal evolution to capture the
graph dynamism in dynamic networks by using LSTM to update
the GIN weights. The experiments on both a synthetic dataset and
a real-world dataset show the proposed model can outperform the
baseline method.
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1 INTRODUCTION
Networks are a type of graph, which can show the entities repre-
sented by nodes and a variety of relationships represented by links.
There are two types of networks: static networks in which the
whole structure remains same and dynamic networks in which the
whole structure is reshaped with the passage of time. Link predic-
tion identifies the missing links in static networks or predicts the
likelihood of future links in dynamic networks. Since real-world
networks always evolve over time, link prediction in dynamic net-
works attracts more and more concerns in recent years. Link pre-
diction in dynamic networks has a variety of applications, such as
friend recommendation, citation recommendation, routing in net-
works, inference of biological interactions, identification of evolu-
tion patterns, and so on.

There are a variety of techniques for link prediction. Graph neu-
ral network (GNN)-based methods have significantly advanced the
state of the art in the past few years. Graph neural network [7, 36,
37] adds graph operations to the traditional deep learning models
and applies the structural information and attribute information
of the graph to tackle the graph complexity, thus achieving high
performance in many tasks such as link prediction, node classifica-
tion and graph classification. When GNN is adopted to link predic-
tion in dynamic networks, many researches utilize graph convolu-
tional network (GCN) [14] and combine it with recurrent neural
network (RNN) [34] to capture the evolution nature of dynamic
networks. Peraja et al. proposed a model called EvolveGCN [23],
in which the weights of the GCN are updated with RNN to capture
the dynamism of the graph sequence. Although this method lifted
the restriction of requiring node knowledge over the whole time
span and achieved higher performance compared with related ap-
proaches, the link prediction accuracy is still limited.

Generally, GNN generates node embeddings that take into ac-
count the surrounding structure by aggregating the embeddings of
neighbouring nodes and recursively conducting the aggregation.
Therefore, multiple iterations are required in order to consider a
wider range of structures. However, when embedding aggrega-
tions are repeated with a great many iterations, an over-smoothing
problem occurs, which usually causes performance degradation



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

for the target tasks. This is because node embeddings are averaged
out [17]. This drawback hindersmanyGNNs from generating node
embeddings which can infuse global structure information of the
network.

On the other hand, graph isomorphism network (GIN) [38] gen-
erates graph embeddings and performs well for graph classifica-
tion. The model can generate node embeddings aggregated from
neighbouring nodes, and obtain highly representative embeddings
of the entire graph by pooling. GIN takes into account the structure
of the entire network and can avoid the over-smoothing problem.

In this paper, we propose amodel called EvolveGIN, which com-
bines GNN (typically GIN) with RNN (typically LSTM) to handle
link prediction in dynamic networks. By using GIN, node embed-
dings that reflect the surrounding structure and graph embedding
that aggregates the structure of the entire network are generated.
They are then combined to obtain the high-level representation
of graph nodes. Furthermore, by using LSTM, GIN weights are
updated to capture the temporal evolution in dynamic networks.
Node representation infused with the entire network structure and
graph sequence dynamism is used for the classification of link ex-
istence between two nodes in a graph at a target time step.

The main contributions of this work are summarized below:

(1) We propose a model EvolveGIN that combines GIN with
LSTM to achieve link prediction in dynamic networks. The
experiments on two datasets show the proposed model can
outperform the baseline.

(2) The effectiveness of integrating graph embedding to node
embeddings is verified in terms of the performance improve-
ment for dynamic link prediction.

(3) It is proved that increasingMLP layers in GIN helps improve
the performance of link prediction in some cases.

The rest of this paper is organised as follows. Section 2 reviews
related work. Section 3 introduces the task of dynamic link predic-
tion and some prior knowledge. Section 4 describes the proposed
model for dynamic link prediction. Section 5 reports the evaluation
experiments. Finally, Section 6 concludes this paper.

2 RELATEDWORK
Researchers have studied a variety of link prediction techniques [15,
16, 31, 35], which can be grouped into several categories, like similarity-
based indices, probabilisticmodels, classifier-based approaches, net-
work embedding-based methods, and so on. Before 2010, main-
stream methods were similarity-based indices due to their sim-
plicity and high efficiency. However, these methods cannot make
full use of nodes and network topology information. Probabilistic
models extract the underlying structure from a network and es-
timate the parameters that can best fit the data of the network.
However, these methods are computationally expensive and thus
unsuitable for real large networks. Many classification algorithms
such as SVM, KNN, and MLP are applicable for link prediction. Al-
though classifier-based approaches with appropriate features can
obtain high performance results, these methods face the problem
of class imbalance due to the sparsity of real large networks. The
most advanced network embedding-based methods , also known

as graph representation learning, intend to address the deficien-
cies of the traditional methods. Network embedding aims to re-
duce the dimensionality of feature representation and capture the
characteristics of the network at the same time.

In the survey paper [35], according to different encoding tech-
niques, network embedding methods are further divided into ma-
trix factorization-based methods (e.g., [3, 20]), random walk-based
methods (e.g., [9, 24]), graph neural network-based methods, and
other methods. As a representative class of methods, the graph
neural network methods have been studied in recent years, which
add graph operations to the traditional deep learningmodels. Hamil-
ton et al. proposed a model called GraphSAGE [12], which learns
a function for node information aggregation by sampling the fea-
tures of neighbouring nodes. Zhang et al. proposed link prediction
frameworksWLNM [39] and SEAL [40] to automatically learn net-
work topology features by extracting and encoding a subgraph for
a target link. Cluster-GCN [6] improved computational efficiency
by using a graph clustering algorithm to identify a subgraph and
restricting the search space. mLink [2] and MSVGAE [11] trans-
formed subgraphs to different scales, providing supplementary em-
bedding information formore effective link prediction. PLACN [25]
and HyConvE [30] exploited the powerful information extraction
capabilities of convolutional neural networks for effective link pre-
diction and achieved the superior performance.

Most network embedding-basedmethods mainly focus on static
networks, while many real-world networks always evolve over
time. Link prediction in dynamic networks thus has attracted in-
creasing attention. CDNE [18] tackled the problem of dynamic net-
work embedding as a minimization of a loss function, which in-
tends to maximally preserve the global node structures, local link
structures and community dynamics. E-LSTM-D [5] proposed a
deep learning model to learn structural and temporal features in a
unified framework, which can handle long-term prediction prob-
lems. LP-ROBIN [1] exploited incremental embedding to predict
new links, which means after the arrival of new data, it does not
retrain the model from scratch, but updates the latent representa-
tion of old nodes and links to reflect changes in the network struc-
ture. Spatial-temporal graph neural networks were constructed to
deal with the tasks in criminology field [21] and for traffic forecast-
ing [10]. Two works [4, 19] combined graph convolution network
(GCN) and recurrent neural network (RNN). For each snapshot,
GCN is applied to learn the local structural properties of nodes
and the relationships between them. RNN is adopted as the frame-
work to capture the evolution nature of all snapshots of a dynamic
network. EvolveGCN [23] is also a combination model of GCN and
RNN, but is different from other similar direction methods in that
it utilizes RNN to regulate not node embeddings but GCN param-
eters.

GCN generates node embeddings that consider the surrounding
structure by aggregating information fromneighbouring nodes and
recursively conducting the process. To obtain node embeddings
that can capture the information of distant nodes using thesemeth-
ods, many iterations of information aggregation processes are re-
quired. However, the phenomenon of over-smoothing occurs due
to the repetitive processing of information aggregation, whichweak-
ens the representation ability of node embeddings and in turn de-
grades the prediction performance. Therefore, in this study, we
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explore GIN to also generate graph embedding and integrate it
with node embeddings to obtain high-level representation. Dy-
namic link prediction is achieved by combining GIN with RNN
(typically LSTM). Following the idea of EvovleGCN [23] that fo-
cuses on the model itself without resorting to node embeddings,
our work adopts the similar architecture that introduces LSTM to
update GIN parameters. Because GCN’s simplicity may hinder a
satisfied accuracy of link prediction in dynamic networks, we in-
tend to improve the performance with the combination of GIN and
LSTM.

3 PRELIMINARIES
This section describes the task of link prediction in dynamic net-
works and introduces the prior knowledge about GNN, GCN, GIN
and EvolveGCN.

3.1 Dynamic link prediction
In this study, we perform link prediction in dynamic networks. The
dynamic networks consist of snapshots of time-varying graphs at
each time step, represented by G = {𝐺1, ...,𝐺𝑇 }. 𝐺𝑡 = (𝑉 , 𝐸𝑡 ,H𝑡 )
represents the graph at time step 𝑡 , 𝑉 = {𝑣1, ..., 𝑣𝑁 } is the node
set1, 𝐸𝑡 = {(𝑢, 𝑣)𝑡 |𝑢, 𝑣 ∈ 𝑉 } is the link set, H𝑡 ∈ R𝑁×𝐷 is the
node feature matrix, where 𝑁 is the number of nodes and 𝐷 is the
number of dimensions of the node feature. In this study, we predict
links between any two nodes (𝑢, 𝑣)𝑡 in𝐺𝑡 at time step 𝑡 , using the
dynamic networks G𝑡−1 = {𝐺1, ...,𝐺𝑡−1} as input. That is to say, it
is a binary classification task for link existence at time step 𝑡 .

3.2 Graph neural network (GNN)
GNN is a generic term for neural network models handling data
with a graph structure. There are twomain steps in a GNN process:
the first step is to collect information fromneighbouring nodes; the
second step is to combine the information collected from neigh-
bouring nodes with the information of the target node. These two
steps together form a layer of GNN. By stacking this layer 𝑘 times,
it is possible to indirectly capture the information of nodes that are
𝑘-hop away.

3.3 Graph convolutional network (GCN)
GCN [14] is a type of GNNproposed as a node classificationmethod
in 2017 by Kipf et al. The model performs convolution on the infor-
mation of neighbouring nodes for all nodes in one layer by using
the following formula to generate node embeddings:

H(𝑙) = 𝜎 (D̃−1/2ÃD̃−1/2H(𝑙−1)W(𝑙−1) ) (1)

Ã = A + I

D̃ = 𝑑𝑖𝑎𝑔
©­«
∑
𝑗

�̃�𝑖 𝑗
ª®¬

where A is the adjacency matrix for the input of an undirected
graph, I is the unit matrix andW(𝑙−1) is the learned weights of the
(𝑙−1)-th layer. 𝜎 (·) is the activation function, usually implemented

1𝑉 is invariant over time and there exist nodes with no links.

with𝑅𝑒𝐿𝑈 (·) =𝑚𝑎𝑥 (0, ·). Denoting the dimension of node embed-
dings in the 𝑙-th layer as 𝐷 2, the matrix of node embeddings can
be represented as H(𝑙) ∈ R𝑁×𝐷 , where H(0) at 𝑙 = 0 is the in-
put node features. By repeating these layers, information can be
indirectly aggregated even for the nodes far from the target node.
This model is usually used for node classification by feeding the
generated node embeddings to a classifier.

3.4 Graph isomorphism networks (GIN)
GIN [38] is a type of GNNproposed as a graph classificationmethod
in 2019 by Xu et al. The model is expected to achieve the ability
as the Weisfeiler-Lehman (W-L) graph isomorphism test [27]. The
W-L graph isomorphism test determines whether two graphs 𝐺1
and 𝐺2 are isomorphic. GIN consists of two components: a node
embedding generator and a graph embedding generator. The rep-
resentation for the node embedding part is generated by the fol-
lowing formula:

h(𝑙)𝑣 = 𝑀𝐿𝑃 (𝑙) ©­«
(
1 + 𝜖 (𝑙)

)
· h(𝑙−1)𝑣 +

∑
𝑢∈𝑁 (𝑣)

h(𝑙−1)𝑢
ª®¬ (2)

where h(𝑙)𝑣 is the node embedding vector of the target node 𝑣 in
the 𝑙-th layer and h(0)𝑣 at 𝑙 = 0 is the input feature vector of node
𝑣 . 𝑁 (𝑣) is the neighbour node set of the target node 𝑣 . 𝑀𝐿𝑃 (𝑙)

is the multilayer perceptrons and 𝜖 (𝑙) is a training parameter of
layer 𝑙 . By designing the model in this way, the conditions of the
W-L graph isomorphism test are satisfied. In addition, the node
embeddings can be used directly for tasks such as link prediction
and node classification.

The representation for the graph embedding part is generated
by the following formula:

h𝐺 = 𝐶𝑂𝑁𝐶𝐴𝑇
(
h(𝑙) |𝑙 = 0, 1, ..., 𝐿

)
(3)

h(𝑙) = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇
(
h(𝑙)𝑣 |𝑣 ∈ 𝐺

)
where h𝐺 is the graph embedding and𝐶𝑂𝑁𝐶𝐴𝑇 is the concate-

nation operation. 𝑅𝐸𝐴𝐷𝑂𝑈𝑇 indicates the pooling of node embed-
dings for each layer. By concatenating such embeddings from the
0-th layer to the 𝐿-th layer, the same ability can be achieved with
that of the W-L graph isomorphism test. Graph classification can
be achieved by feeding the graph embedding to a classifier.

3.5 EvolveGCN
EvolveGCN [23] is a type of GNN for dynamic graphs proposed
as the method of dynamic link prediction and node classification
in 2020 by Pareja et al. The model combines a static GCN and an
RNN, which can handle time-series data. As a feature of this model,
EvolveGCN updates the weights of the GCN using RNN.

W(𝑙)
𝑡 = 𝑅𝑁𝑁 (𝑙) (W(𝑙)

𝑡−1) (4)

2For simplicity, the dimension ofH(𝑙 ) is marked as a same𝐷 , but different layers may
set different dimensions.
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where W(𝑙)
𝑡 is the GCN weights in the 𝑙-th layer at time step 𝑡 ,

and 𝑅𝑁𝑁 (𝑙) (·) is the recurrent neural network that adapts GCN
weights to reflect the temporal dynamism of the graph sequence.

4 PROPOSED MODEL
4.1 Model overview
The overview of the proposedmodel EvolveGIN is shown in Figure
1. Our model extends the model proposed by Pareja et al. [23] by
exploring GIN to obtain high-level representation of node embed-
dings and using LSTM [13] to dynamically update GIN weights. In
EvolveGIN, only the LSTM weights are trained. The GIN weights
are not trained but are computed by using the learned LSTM.

EvolveGIN is structured as follows. At each time step, there is
a GIN component GIN-COM, which consists of a node embedding
generator (green part in Figure 1) and a graph embedding gen-
erator (blue part in Figure 1) 3. Each node embedding generator is
composed of 𝐿 GIN-NEs that intend to aggregate node embeddings
from 𝐿-hop neighbourhoods. Each GIN-NE is a𝑤-layer MLP. Fur-
thermore, LSTMs are horizontally connected to dynamically up-
date the weights of each-layer MLP in each GIN-NE. Thus, totally
there are 𝐿 ×𝑤 LSTMs in the model. At the prediction time step,
the node embeddings from GIN-NEs are integrated with the graph
embedding from the graph embedding generator and are then fed
to a classifier to perform the link prediction.

The process flow of EvolveGIN is as follows. At time step 𝑡 − 1,
graph𝐺𝑡−1 is input to GIN-NEs to obtain node embeddings (sum-
marized as Step 1 in Section 4.2). Then, for each layer of MLP in
each GIN-NE, the MLP weights at time step 𝑡 are computed by
feeding the MLP weights at time step 𝑡 − 1 to LSTM that has been
trained to learn the dynamism of graph sequence (Step 2). After
that, at time step 𝑡 , same as the process of Step 1, GIN-NEs gen-
erate node embeddings with each layer of MLP weights updated
with Step 2. At the prediction time step, graph embedding is also
generated (Step 3) and integrated into node embeddings (Step 4).
Finally, any two nodes are selected and link prediction between
them is performed by feeding their output node embeddings to a
classifier (Step 5).

4.2 Model details
This section describes the details of each part of EvolveGIN.

4.2.1 Step 1: Node embedding generation with GIN-NEs. Node em-
beddings are generated with GIN-NEs. At each time step 𝑡 − 1, the
input to the 𝑙-th GIN-NE is the matrix of node embeddings H(𝑙−1)

𝑡−1
that is the output of the (𝑙 − 1)-th GIN-NE. H(0)

𝑡−1 is the matrix of
input node features of graph𝐺𝑡−1. The 𝑙-th GIN-NE computes the
embeddings for node 𝑣 at time step 𝑡 − 1 as follows:

H(𝑣) (𝑙)𝑡−1 = 𝑀𝐿𝑃
(𝑙)
𝑡−1

©­«
(
1 + 𝜖

(𝑙)
𝑡−1

)
· H(𝑣) (𝑙−1)𝑡−1 +

∑
𝑢∈𝑁 (𝑣)𝑡−1

H(𝑢) (𝑙−1)𝑡−1
ª®¬
(5)

3It is possible to generate graph embedding for each time step. However, since it is
actually needed only at the prediction time step for training and inference, the graph
embedding generator is shown only at the last time step in Figure 1.

where H(𝑣) (𝑙)𝑡−1 ∈ R1×𝐷 is the embedding of node 𝑣 at time step
𝑡−1 computed by the 𝑙-th GIN-NE, and𝐷 is the dimensions of node
embeddings. 𝑁 (𝑣)𝑡−1 is the set of neighbouring nodes of node 𝑣 at
time step 𝑡 − 1. 𝜖 (𝑙)𝑡−1 is the learning parameter of the 𝑙-th GIN-NE
at time step 𝑡 − 1, which is fixed to 0 in this model because it is
verified less effective in the previous study [38].𝑀𝐿𝑃

(𝑙)
𝑡−1 represents

the multilayer perceptron of the 𝑙-th GIN-NE at time step 𝑡 − 1.
Node embeddings are generated by applying the above formula

for all the nodes in the graph. By stacking multiple GIN-NEs, node
embeddings are generated taking into account the surrounding
structure of nodes.

4.2.2 Step 2: Update of MLP weights in GIN-NEs with LSTM. The
MLP weights in GIN-NEs are updated with LSTM trained to reflect
the dynamism of graph sequence. Input with W(𝑤)𝑙𝑡−1 (i.e., the
weights of the 𝑤-th layer of MLP in the 𝑙-th GIN-NE at time step
𝑡 − 1), LSTM computes the weightsW(𝑤)𝑙𝑡 of the same𝑤-th layer
of MLP in the same 𝑙-th GIN-NE at the next time step 𝑡 4:

W(𝑤) (𝑙)𝑡 = 𝐿𝑆𝑇𝑀
(𝑙)
𝑤

(
W(𝑤) (𝑙)𝑡−1

)
(6)

where 𝐿𝑆𝑇𝑀 (𝑙)
𝑤 (·) is the LSTM for the𝑤-th layer of MLP in the

𝑙-th GIN-NE. By updating each layer of MLP weights in each GIN-
NE in such a way, GIN-NEs can generate node embeddings that
can also capture the time-series change in dynamic networks.

4.2.3 Step 3: Graph embedding generation from node embeddings.
At time step 𝑡 , the time point for link prediction, graph embedding
is also generated from node embeddings as shown in the blue part
of Figure 2. The generation method is as follows:

h𝐺𝑡 = 𝐶𝑂𝑁𝐶𝐴𝑇 (h(𝑙)𝑡 |𝑙 = 0, 1, ..., 𝐿) (7)

h(𝑙)𝑡 = 𝑆𝑈𝑀
(
H(𝑣) (𝑙)𝑡 |𝑣 ∈ 𝐺𝑡

)
where h𝐺𝑡 ∈ R1×( (𝐿+1)∗𝐷) is graph embedding at time step 𝑡

and h(𝑙)𝑡 is the sum pooling results of node embeddings generated
by the 𝑙-th GIN-NE. 𝐶𝑂𝑁𝐶𝐴𝑇 is the concatenation operation and
𝑆𝑈𝑀 is the operation that sums up the embeddings of the nodes.
These operations generate the embedding of the entire graph from
the node embeddings with a simple architecture.

4.2.4 Step 4: Integration of graph embedding into node embeddings.
In order to infuse the global information into node embeddings,
generated graph embedding is integrated into node embeddings
as shown in the yellow part of Figure 2. Our method employs a
mechanism whereby the influence degree of graph embedding can
be varied by applying a coefficient 𝛼 to graph embedding. First, a
linear transformation is performed to reform graph embedding to
the same dimension as the node embeddings. Then, the reformed
graph embedding is multiplied by the coefficient 𝛼 and is concate-
nated to the embedding of each node, i.e., each row of H(𝐿)

𝑡 . The

4A general formula for LSTM is h𝑡 , c𝑡 = 𝐿𝑆𝑇𝑀 (x𝑡 , h𝑡−1, c𝑡−1) . In EvolveGIN, c𝑡
and c𝑡−1 are not considered, h𝑡−1 is a column vector in the matrix of each-layer MLP
weights, and x𝑡 is set as same with h𝑡−1 . That is to say, node embeddings are not
used for the update of MLP weights. Although a vector is a general input to LSTM,
the matrix input to LSTM in Formula 6 can be understood by using the same LSTM
to process each column of the matrix.



Link Prediction in Dynamic Networks by Combining GIN with LSTM Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 1: Overview of EvolveGIN with an example of 𝐿 = 2,𝑤 = 2, 𝑡 = 3. 𝐿 is the number of GIN-NEs,𝑤 is the number of layers
in each GIN-NE, and 𝑡 is the time step.

.

Figure 2: Graph embedding generation from node embeddings and their combination

output representation is denoted as H𝑜𝑢𝑡 ∈ R𝑁×2𝐷 , where 𝑁 is
the number of nodes and 𝐷 is the number of dimensions of node
embeddings. Thus, the integrated node embeddings may contain
information from both the surrounding structure and the structure
of the entire graph.

4.2.5 Step 5: Link prediction with a classifier. Finally, a classifier is
applied to link prediction fed with the embeddingsH𝑜𝑢𝑡 generated
at the prediction time step. After all node pairs (𝑢, 𝑣)𝑡 in𝐺𝑡 are cre-
ated, the embeddings corresponding to two nodes in each pair are
concatenated and passed to a classifier to calculate the probability
that the link may exist between these two nodes.
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Table 1: Datasets

# of nodes # of links Time steps
(Train / Validation / Test)

SBM 1,000 4,870,863 35 / 5 / 10
UCI 1,899 59,835 62 / 9 / 17

5 EXPERIMENTS
This section describes the evaluation experiments. We first intro-
duce the experimental setup and then report the experimental re-
sults.

5.1 Experimental setup
5.1.1 Datasets. We conduct the experiments on both a synthetic
SBM dataset and a real-world UCI dataset. The SBM dataset is gen-
erated synthetically [23] based on a popularly used random graph
model Stochastic Block Model [33], which simulates graph struc-
tures and evolutions. Each node has its community. The proba-
bilities of linking two nodes from the same community and link-
ing two nodes from different communities are set to different val-
ues. Furthermore, in order to reflect the dynamism, at each time
step some nodes are randomly selected and their communities are
changed. The parameters for generating this dataset refer to the
previous research [8]. The UCI dataset is a standard dataset for
link prediction tasks5. It is formed from a real-world online com-
munity of students at the University of California, Irvine [22]. The
nodes of this social network are the students and the links indicate
message exchanges between them.

The number of nodes, the number of links and the time steps
used for Train/Validation/Test are shown in Table 1. The node fea-
ture vector, i.e., the input to the first GIN-NE, is generated through
one-hot encoding. It means that the dimension of each node’s fea-
ture vector is the type number of distinct degrees of all the nodes.
For a node, the element of the dimension with the corresponding
degree is set to 1 and all the others are set to 0. In the experiments,
the graphs from time step 1 to 𝑡 − 1 are the input and whether a
link exists between a node pair (𝑢, 𝑣)𝑡 in 𝐺𝑡 at time step 𝑡 is pre-
dicted. The time step windows are set to 6 for SBM and 11 for UCI,
respectively.

5.1.2 Development environment. Our experiments are conducted
using 51 GB RAM and a Tesla T4 GPU in Google Colaboratory6.
Google Colaboratory is one of Google’s research projects to pro-
mote machine learning mainly in education and research institu-
tions. This service enables Python programs to be executed with
GPUs or TPUs through the browser, making it easy to perform
large-scale computations such as deep learning. The deep learning
library Pytorch7 and Deep Graph Library8 [32] are used for the
implementation of EvolveGIN.

5.1.3 Model parameters. EvolveGIN combines GIN with LSTM to
achieve dynamic link prediction. The number of GIN-NEs at each
5http://konect.cc/networks/opsahl-ucsocial/
6https://colab.research.google.com/
7https://pytorch.org/
8https://www.dgl.ai

Table 2: Hyperparameters in EvolveGIN

Hyperparameter Value for SBM Value for UCI

# of epochs 40 40
Learning rate 0.005 0.001
Embedding size 100 100

Table 3: Hyperparameters in EvolveGCN

Hyperparameter Value for SBM Value for UCI

Cross-entropy weights (0.15,0.85) (0.1,0.9)
# of epochs 100 100
Learning rate 0.005 0.001
Embedding size 100 100

time step is fixed to 𝐿 = 2, and the number of MLP layers in each
GIN-NE is tested and compared with different values 𝑤 = 2, 3, 4.
ReLU is adopted as the activation function in GIN-NEs. The clas-
sifier for link prediction at time step 𝑡 is composed of a two-layer
MLP and a softmax activation function, which can output the prob-
ability that a link between two nodes exists. Because in the datasets
Class 1 (linked) has far less learning data than Class 0 (unlinked),
a weighted cross-entropy function is used as the objective func-
tion during training. The cross-entropy weights are also tested
in the experiments. The hyperparameters used for EvolveGIN are
shown in Table 2. As the compared baseline, EvolveGCN is im-
plemented with 𝐿 = 2 in our experimental environment. Other
hyperparameters are shown in Table 3, referring to the settings in
EvolveGCN [23].

5.1.4 Evaluation metric. We use Mean Average Precision (MAP)
as the evaluationmetric, which ranges from 0 to 1. The higherMAP
value indicates better link prediction with high performance. MAP
is calculated by the following formula:

𝑀𝐴𝑃 =
𝐴𝑃 (𝐶𝑙𝑎𝑠𝑠0) +𝐴𝑃 (𝐶𝑙𝑎𝑠𝑠1)

2
(8)

𝐴𝑃 =
∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

where Class 0 and Class 1 correspond to “unlinked” and “linked”
respectively, and 𝑅𝑛 and 𝑃𝑛 are the recall and the precision at each
predicted probability 𝑛.

5.1.5 Experimental contents. Three experiments are conducted. The
first experiment verifies the effectiveness of graph embedding by
changing the coefficient 𝛼 of integrating graph embedding into
node embeddings. The second experiment investigates the perfor-
mance change by testing different numbers of MLP layers in GIN-
NEs. The third experiment compares the performance between our
proposal EvolveGIN and the baseline EvolveGCN.

5.2 Experimental results
5.2.1 Effectiveness of graph embedding. We verify the effective-
ness of graph embedding for dynamic link prediction by varying
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Figure 3: Influence of graph embedding on SBM

Figure 4: Influence of graph embedding on UCI

the coefficient 𝛼 of integrating graph embedding into node em-
beddings. Five different coefficients 𝛼 are tested for comparison:
0, 10−5, 10−4, 10−3, 10−2. In this experiment, each GIN-COM con-
sists of two GIN-NEs, each of which is a two-layer MLP. Cross-
entropy weights (Class 0: unlinked, Class 1: linked) are tested for
SBM: (0.2, 0.8), (0.15, 0.85), (0.1, 0.9), (0.05, 0.95), (0.01, 0.99) and for
UCI: (0.15, 0.85), (0.1, 0.9), (0.05, 0.95) and (0.01, 0.99)9. The experi-
ment is performed three times for each setting and the evaluation
results are averaged.

The MAP of EvolveGIN for SBM is shown in Figure 3. The ob-
servation shows that peaks often occur when the cross-entropy
weights are (0.1, 0.9) and (0.01, 0.99), and more low values are
recorded atweights (0.2, 0.8).When𝛼 = 0without additional graph
embedding, theMAP remains around 0.15 fromweights (0.2, 0.8) to
(0.1, 0.9) and gradually decreases at other weights. When 𝛼 = 10−5
with graph embedding slightly added, the MAP is relatively stable
above 0.15, achieving a maximum value of 0.1888 in the graph at
weights (0.1, 0.9).

9(0.2, 0.8) for UCI is not listed, because if the weight for Class 0 is set larger than 0.15,
all the data in this dataset are classified as Class 0 with any of the five 𝛼 .

Figure 5: Influence of MLP layers in GIN-NEs on SBM

Figure 6: Influence of MLP layers in GIN-NEs on UCI

TheMAP of EvolveGIN for UCI is shown in Figure 4.We can ob-
serve that peaks occur at weights (0.15, 0.85) and (0.05, 0.95). When
𝛼 = 0 without additional graph embedding, the MAP achieves the
highest value at weights (0.15, 0.85) and then gradually decreases
at other weights. The maximum value of 0.0217 in the graph is
recorded at “𝛼 = 10−2 and (0.05, 0.95)” and at “𝛼 = 10−4 and (0.1,
0.9)”. When 𝛼 = 10−5 with graph embedding slightly added, the
MAP is often larger than or almost equal to those values with other
𝛼 .

On both datasets, the maximum values are obtained when 𝛼
is not 0, which indicates a performance improvement can be ex-
pected by integrating graph embedding into node embeddings. In
Figure 3 and Figure 4, higher MAP is often achieved when 𝛼 =
10−5, which indicates that adding a small amount of graph embed-
ding may be more appropriate.

5.2.2 Influence of MLP layers in GIN-NEs. We examine the perfor-
mance change by varying the number of MLP layers in GIN-NEs.
The number of MLP layers in GIN-NEs is set to 2, 3 and 4. The
experiment is conducted three times for each setting and the eval-
uation results are averaged. For each number of MLP layers and
each 𝛼 , the maximum value at all weights is compared.
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Table 4: Comparison of MAP between EvolveGIN and
EvolveGCN

Model SBM UCI

EvolveGIN (2MLP) 0.1888 0.0213
EvolveGIN (3MLP) 0.2038 0.0215
EvolveGIN (4MLP) 0.2028 0.0217

EvolveGCN 0.1938 0.0164

Figure 5 shows that the MAP obtained by models with a three-
layer MLP and a four-layer MLP hovers around 0.20 and is always
higher than the model with a two-layer MLP on SBM. This may
be because increasing the number of MLP layers in GIN-NEs can
obtain higher-level representations of the nodes.

Figure 6 shows that the MAP obtained by models with a two-
layer MLP and a three-layer MLP hovers around 0.020, while the
model with a four-layer MLP records a minimum value of 0 when
𝛼 = 0. The performance does not vary significantly between the
different layers of MLP. However, for the model with a four-layer
MLP when 𝛼 = 0, i.e., no graph embedding is added, the perfor-
mance is significantly decreased. This may be dataset dependent.
Checking the total number of links in Table 1, UCI is a very bi-
ased dataset with a very small number of links. From another point
of view, graph embedding may be effective in preventing extreme
performance degradation.

5.2.3 Comparison between EvolveGIN and EvolveGCN. We com-
pare the performance between our proposal EvolveGIN and the
baseline EvolveGCN. The parameters of EvolveGCN are based on
[23]. The numbers of components in both EvolveGCN and Evolve-
GIN at each time step are the same with 𝐿 = 2. The number of MLP
layers in GIN-NEs of EvolveGIN is set to𝑤 = 2, 3 and 4. The coeffi-
cient 𝛼 is set to 0, 10−5, 10−4, 10−3, 10−2. The cross-entropy weights
are set for SBM to (0.2, 0.8), (0.15, 0.85), (0.1, 0.9), (0.05, 0.95), (0.01,
0.99), and for UCI to (0.15, 0.85), (0.1, 0.9), (0.05, 0.95) and (0.01,
0.99). The experiment is conducted three times for each setting and
the evaluation results are averaged. For each setting with a𝑤-layer
MLP, varying the coefficient 𝛼 and the cross-entropy weights, the
highest value is adopted for performance comparison.

The results are shown in Table 4. On SBM, although the MAP
of the EvolveGIN with a two-layer MLP is inferior to EvolveGCN,
the models with a three-layer and a four-layer MLP achieve higher
performance than EvolveGCN. The best result is obtained by the
model with a three-layerMLP. On UCI, all three EvolveGINmodels
outperform EvolveGCN and the best result is obtained when using
a four-layer MLP in GIN-NEs. This may be because node embed-
dings obtained with more layers of MLP in GIN-NEs can provide
higher-level representation than GCN.

6 CONCLUSION
In this paper, we proposed a model EvolveGIN for link prediction
in dynamic networks. GIN is used to generate node embeddings
that capture the surrounding information and graph embedding
that captures the structure of the entire graph. The integration of

graph embedding into node embeddings is devised to obtain high-
level node representation. LSTM is adopted to update GIN weights
to reflect the dynamism of graph sequence. Through the exper-
iments on both a synthetic dataset and a real-world dataset, we
verified that EvolveGIN can improve the prediction performance
by integrating a small amount of graph embedding into node em-
beddings and by increasing MLP layers in GINs, and hence outper-
form the baseline.

Compared with recurrent methods modelling graph evolution
as our current work does, graph attention mechanism [29] may be
effective for achieving competitive performance [26, 28]. In future
work, we plan to explore such graph attentionmodels and evaluate
prediction performance with more metrics such as MRR and AUC.
Furthermore, since dynamic link prediction is usually conducted
on unbalanced data, we will also consider the classifiers that in-
corporate anomaly detection techniques.
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